THEOREM
*******
     [A => B] | [B => C]
PROOF
*****
    Suppose to the contrary...
      1     ~[[A => B] | [B => C]]
            Premise
    Prove: A & ~B & [B & ~C]
    
    Apply Imply-And Rule for each '=>'   (previously justified here) 
      2     ~[~[A & ~B] | [B => C]]
            Imply-And, 1
      3     ~[~[A & ~B] | ~[B & ~C]]
            Imply-And, 2
    Apply De Morgan' Law
      4     ~~[~~[A & ~B] & ~~[B & ~C]]
            DeMorgan, 3
    Remove each '~~'
      5     ~~[A & ~B] & ~~[B & ~C]
            Rem DNeg, 4
      6     A & ~B & ~~[B & ~C]
            Rem DNeg, 5
      7     A & ~B & [B & ~C]
            Rem DNeg, 6
    Apply Split Rule
      8     A
            Split, 7
      9     ~B
            Split, 7
      10   B & ~C
            Split, 7
      11   B
            Split, 10
      12   ~C
            Split, 10
    Obtain contradication...
      13   B & ~B
            Join, 11, 9
Apply Conclusion Rule  (Proof by
contradiction)
14   ~~[[A => B] | [B => C]]
      4 Conclusion, 1
As Required:
15   [A => B] | [B => C]
      Rem DNeg, 14