THEOREM

*******

 

     ALL(u):[Set(u)    

     => [ALL(a):[a e u => P(a)]

     <=> ALL(a):[Set(a) & ALL(b):[b e a => b e u] => ALL(b):[b e a => P(b)]]]]

 

This proof makes use of a proof by contrapositive. It also makes use the Subset Axiom of set theory to construct singleton, a subset of set u.

 

Dan Christensen

2023-07-12

http://www.dcproof.com

 

 

PROOF

*****

 

    Let u be an arbitrary set (the implicit so-called "domain of discourse" in standard FOL)

 

      1     Set(u)

            Premise

 

        

         '=>'

        

         Prove: ALL(a):[a e u => P(a)]

                => ALL(a):[Set(a) & ALL(b):[b e a => b e u] => ALL(b):[b e a => P(b)]]

        

         Suppose...

 

            2     ALL(a):[a e u => P(a)]

                  Premise

 

             Prove: ALL(a):[Set(a) & ALL(b):[b e a => b e u] => ALL(b):[b e a => P(b)]]

            

             Suppose...

 

                  3     Set(y) & ALL(b):[b e y => b e u]

                        Premise

 

                  4     Set(y)

                        Split, 3

 

                  5     ALL(b):[b e y => b e u]

                        Split, 3

 

                 Prove: ALL(b):[b e y => P(b)]

                

                 Suppose...

 

                        6     x e y

                              Premise

 

                        7     x e y => x e u

                              U Spec, 5

 

                        8     x e u

                              Detach, 7, 6

 

                        9     x e u => P(x)

                              U Spec, 2

 

                        10   P(x)

                              Detach, 9, 8

 

             As Required:

 

                  11   ALL(b):[b e y => P(b)]

                        4 Conclusion, 6

 

         As Required:

 

            12   ALL(a):[Set(a) & ALL(b):[b e a => b e u]

             => ALL(b):[b e a => P(b)]]

                  4 Conclusion, 3

 

   

    '=>'

   

    As Required:

 

      13   ALL(a):[a e u => P(a)]

         => ALL(a):[Set(a) & ALL(b):[b e a => b e u]

         => ALL(b):[b e a => P(b)]]

            4 Conclusion, 2

 

         Prove: EXIST(a):[a e u & ~P(a)]

                => EXIST(a):[Set(a) & ALL(b):[b e a => b e u] & EXIST(b):[b e a & ~P(b)]]

        

               Using proof by contrapositive to prove the converse:

        

               ALL(a):[Set(a) & ALL(b):[b e a => b e u] => ALL(b):[b e a => P(b)]]

  => ALL(a):[a e u => P(a)]

        

         Suppose...

 

            14   EXIST(a):[a e u & ~P(a)]

                  Premise

 

            15   x e u & ~P(x)

                  E Spec, 14

 

            16   x e u

                  Split, 15

 

            17   ~P(x)

                  Split, 15

 

        

         Apply the Subset Axiom to construct the singleton {x} as a subset of u

 

            18   EXIST(sub):[Set(sub) & ALL(a):[a e sub <=> a e u & a=x]]

                  Subset, 1

 

         Define: y    y = {x}

 

            19   Set(y) & ALL(a):[a e y <=> a e u & a=x]

                  E Spec, 18

 

            20   Set(y)

                  Split, 19

 

            21   ALL(a):[a e y <=> a e u & a=x]

                  Split, 19

 

             Prove: ALL(b):[b e y => b e u]

            

             Suppose...

 

                  22   z e y

                        Premise

 

             Apply the definition of y

 

                  23   z e y <=> z e u & z=x

                        U Spec, 21

 

                  24   [z e y => z e u & z=x] & [z e u & z=x => z e y]

                        Iff-And, 23

 

                  25   z e y => z e u & z=x

                        Split, 24

 

                  26   z e u & z=x

                        Detach, 25, 22

 

                  27   z e u

                        Split, 26

 

         As Required:

 

            28   ALL(b):[b e y => b e u]

                  4 Conclusion, 22

 

         Apply the definition of y

 

            29   x e y <=> x e u & x=x

                  U Spec, 21

 

            30   [x e y => x e u & x=x] & [x e u & x=x => x e y]

                  Iff-And, 29

 

            31   x e u & x=x => x e y

                  Split, 30

 

            32   x=x

                  Reflex

 

            33   x e u & x=x

                  Join, 16, 32

 

            34   x e y

                  Detach, 31, 33

 

            35   x e y & ~P(x)

                  Join, 34, 17

 

            36   EXIST(b):[b e y & ~P(b)]

                  E Gen, 35

 

            37   Set(y) & ALL(b):[b e y => b e u]

                  Join, 20, 28

 

            38   Set(y) & ALL(b):[b e y => b e u]

             & EXIST(b):[b e y & ~P(b)]

                  Join, 37, 36

 

            39   EXIST(a):[Set(a) & ALL(b):[b e a => b e u]

             & EXIST(b):[b e a & ~P(b)]]

                  E Gen, 38

 

    As Required:

 

      40   EXIST(a):[a e u & ~P(a)]

         => EXIST(a):[Set(a) & ALL(b):[b e a => b e u]

         & EXIST(b):[b e a & ~P(b)]]

            4 Conclusion, 14

 

   

    Apply the Contrapostive Rule of inference

 

      41   ~EXIST(a):[Set(a) & ALL(b):[b e a => b e u]

         & EXIST(b):[b e a & ~P(b)]] => ~EXIST(a):[a e u & ~P(a)]

            Contra, 40

 

    Switch quantifiers, etc. as required to obtain the converse:

    ALL(a):[Set(a) & ALL(b):[b e a => b e u] => ALL(b):[b e a => P(b)]] => ALL(a):[a e u => P(a)]

 

      42   ~EXIST(a):~[Set(a) & ALL(b):[b e a => b e u] => ~EXIST(b):[b e a & ~P(b)]] => ~EXIST(a):[a e u & ~P(a)]

            Imply-And, 41

 

      43   ~~ALL(a):~~[Set(a) & ALL(b):[b e a => b e u] => ~EXIST(b):[b e a & ~P(b)]] => ~EXIST(a):[a e u & ~P(a)]

            Quant, 42

 

      44   ALL(a):~~[Set(a) & ALL(b):[b e a => b e u] => ~EXIST(b):[b e a & ~P(b)]] => ~EXIST(a):[a e u & ~P(a)]

            Rem DNeg, 43

 

      45   ALL(a):[Set(a) & ALL(b):[b e a => b e u] => ~EXIST(b):[b e a & ~P(b)]] => ~EXIST(a):[a e u & ~P(a)]

            Rem DNeg, 44

 

      46   ALL(a):[Set(a) & ALL(b):[b e a => b e u] => ~~ALL(b):~[b e a & ~P(b)]] => ~EXIST(a):[a e u & ~P(a)]

            Quant, 45

 

      47   ALL(a):[Set(a) & ALL(b):[b e a => b e u] => ALL(b):~[b e a & ~P(b)]] => ~EXIST(a):[a e u & ~P(a)]

            Rem DNeg, 46

 

      48   ALL(a):[Set(a) & ALL(b):[b e a => b e u] => ALL(b):~~[b e a => ~~P(b)]] => ~EXIST(a):[a e u & ~P(a)]

            Imply-And, 47

 

      49   ALL(a):[Set(a) & ALL(b):[b e a => b e u] => ALL(b):[b e a => ~~P(b)]] => ~EXIST(a):[a e u & ~P(a)]

            Rem DNeg, 48

 

      50   ALL(a):[Set(a) & ALL(b):[b e a => b e u] => ALL(b):[b e a => P(b)]] => ~EXIST(a):[a e u & ~P(a)]

            Rem DNeg, 49

 

      51   ALL(a):[Set(a) & ALL(b):[b e a => b e u] => ALL(b):[b e a => P(b)]] => ~~ALL(a):~[a e u & ~P(a)]

            Quant, 50

 

      52   ALL(a):[Set(a) & ALL(b):[b e a => b e u] => ALL(b):[b e a => P(b)]] => ALL(a):~[a e u & ~P(a)]

            Rem DNeg, 51

 

      53   ALL(a):[Set(a) & ALL(b):[b e a => b e u] => ALL(b):[b e a => P(b)]] => ALL(a):~~[a e u => ~~P(a)]

            Imply-And, 52

 

      54   ALL(a):[Set(a) & ALL(b):[b e a => b e u] => ALL(b):[b e a => P(b)]] => ALL(a):[a e u => ~~P(a)]

            Rem DNeg, 53

 

   

    '<='

   

    As Required:

 

      55   ALL(a):[Set(a) & ALL(b):[b e a => b e u] => ALL(b):[b e a => P(b)]] => ALL(a):[a e u => P(a)]

            Rem DNeg, 54

 

   

    Joining results...

 

      56   [ALL(a):[a e u => P(a)]

         => ALL(a):[Set(a) & ALL(b):[b e a => b e u]

         => ALL(b):[b e a => P(b)]]]

         & [ALL(a):[Set(a) & ALL(b):[b e a => b e u] => ALL(b):[b e a => P(b)]] => ALL(a):[a e u => P(a)]]

            Join, 13, 55

 

   

    Apply the Iff-And Rule

 

      57   ALL(a):[a e u => P(a)]

         <=> ALL(a):[Set(a) & ALL(b):[b e a => b e u]

         => ALL(b):[b e a => P(b)]]

            Iff-And, 56

 

As Required:

 

58   ALL(u):[Set(u)

    => [ALL(a):[a e u => P(a)]

    <=> ALL(a):[Set(a) & ALL(b):[b e a => b e u]

    => ALL(b):[b e a => P(b)]]]]

      4 Conclusion, 1