INTRODUCTION

************

 

Given unary predicate S and binary predicate F, and objects 0 and 1 such that:

 

(1) ALL(a):[S(a) <=> a=0]

 

(2) ~1=0

 

(3) ALL(a):[S(a) => EXIST(b):[S(b) & F(a,b) & ALL(c):[S(c) => [F(a,c) => c=b]]]]

 

Then we have F(0,0) being true. What about F(1,0)? (See comment at end)

 

 

By Dan Christensen

2021-12-04

www.dcproof.com

 

 

PROOF

*****

 

Define: S and 0

 

1     ALL(a):[S(a) <=> a=0]

      Axiom

 

 

Define: 1

 

2     ~1=0

      Axiom

 

 

Define: F

 

3     ALL(a):[S(a) => EXIST(b):[S(b) & F(a,b) & ALL(c):[S(c) => [F(a,c) => c=b]]]]

      Axiom

 

 

Prove: S(0)

 

4     S(0) <=> 0=0

      U Spec, 1

 

5     [S(0) => 0=0] & [0=0 => S(0)]

      Iff-And, 4

 

6     0=0 => S(0)

      Split, 5

 

7     0=0

      Reflex

 

As Required:

 

8     S(0)

      Detach, 6, 7

 

 

Prove: ~S(1)

 

9     S(1) <=> 1=0

      U Spec, 1

 

10   [S(1) => 1=0] & [1=0 => S(1)]

      Iff-And, 9

 

11   S(1) => 1=0

      Split, 10

 

12   ~1=0 => ~S(1)

      Contra, 11

 

As Required:

 

13   ~S(1)

      Detach, 12, 2

 

 

Prove: F(0,0)

 

14   S(0) => EXIST(b):[S(b) & F(0,b) & ALL(c):[S(c) => [F(0,c) => c=b]]]

      U Spec, 3

 

15   EXIST(b):[S(b) & F(0,b) & ALL(c):[S(c) => [F(0,c) => c=b]]]

      Detach, 14, 8

 

16   S(x) & F(0,x) & ALL(c):[S(c) => [F(0,c) => c=x]]

      E Spec, 15

 

17   S(x)

      Split, 16

 

18   F(0,x)

      Split, 16

 

19   ALL(c):[S(c) => [F(0,c) => c=x]]

      Split, 16

 

20   S(x) <=> x=0

      U Spec, 1

 

21   [S(x) => x=0] & [x=0 => S(x)]

      Iff-And, 20

 

22   S(x) => x=0

      Split, 21

 

23   x=0

      Detach, 22, 17

 

As Required:

 

24   F(0,0)

      Substitute, 23, 18

 

 

COMMENT

*******

 

Can we determine a truth value for, say, F(1,0)? No, not from the above assumptions (lines 1-3).

 

Applying the definition of F for a=1, we obtain the following. Note that we cannot use this result to infer

either the existence or non-existense of b since we already have ~S(1) (line 13).

 

25   S(1) => EXIST(b):[S(b) & F(1,b) & ALL(c):[S(c) => [F(1,c) => c=b]]]

      U Spec, 3