THEOREM

*******

 

Here, given some of the common rules of basic arithmetic (line 1-14) and the standard definitions of the even numbers (lines 15-17) and odd numbers (line 19-20) we formally prove that, for all even numbers, the next number will be an odd number.

 

ALL(a):[a e n => [a e even  => a+1 e odd ]]  where n = the set of natural numbers

 

 

COROLLARY

*********

 

ALL(a):[a e n => 2*a e even  & 2*a+1 e odd ]

 

 

By Dan Christensen

2023-02-16

http://www.dcproof.com

 

 

PROOF

*****

 

Basic Rules of Arithmetic Required  (derivable from Peano's Axioms)

 

Define: 0, 1, 2

 

1     0 e n

      Axiom

 

2     1 e n

      Axiom

 

3     ~1=0

      Axiom

 

4     2 e n

      Axiom

 

5     ~2=0

      Axiom

 

From Definition of +  (addition)

 

6     ALL(a):ALL(b):[a e n & b e n => a+b e n]

      Axiom

 

Properties of +

 

7     ALL(a):ALL(b):[a e n & b e n => a+b=b+a]

      Axiom

 

From Definition of *  (multiplication)

 

8     ALL(a):ALL(b):[a e n & b e n => a*b e n]

      Axiom

 

9     ~EXIST(a):[a e n & 2*a=1]

      Axiom

 

From Definition of - (subtraction)

 

10   ALL(a):ALL(b):ALL(c):[a e n & b e n & c e n => [a=c+b => a-b=c]]

      Axiom

 

11   ALL(a):ALL(b):[a e n & b e n => [b<a => a-b e n]]

      Axiom

 

Define: <

 

12   ALL(a):ALL(b):[a e n & b e n => [a<b <=> EXIST(c):[c e n & ~c=0 & a+c=b]]]

      Axiom

 

Properties of <

 

13   ALL(a):ALL(b):ALL(c):[a e n & b e n & c e n & ~a=0 => [a*b<a*c => b<c]]

      Axiom

 

14   ALL(a):ALL(b):ALL(c):[a e n & b e n & c e n => [c<b => a*(b-c)=a*b-a*c]]

      Axiom

 

 

Define: even    (Formal proof of existence here)

 

15   Set(even)

      Axiom

 

even is a subset of n

 

16   ALL(a):[a e even => a e n]

      Axiom

 

17   ALL(a):[a e n => [a e even <=> EXIST(b):[b e n & a=2*b]]]

      Axiom

 

 

Define: odd

 

18   Set(odd)

      Axiom

 

odd is a subset of n

 

19   ALL(a):[a e odd => a e n]

      Axiom

 

20   ALL(a):[a e n => [a e odd <=> ~a e even]]

      Axiom

 

   

    LEMMA

   

    Prove: ALL(a):[a e n => ~EXIST(b):[b e n & 2*a+1=2*b]]

   

    Suppose...

 

      21   x e n

            Premise

 

        

         Prove: ~EXIST(b):[b e n & 2*x+1=2*b]

        

         Suppose to the contrary...

 

            22   y e n & 2*x+1=2*y

                  Premise

 

            23   y e n

                  Split, 22

 

            24   2*x+1=2*y

                  Split, 22

 

         Prove: 2*y=2*x+1  by commutativity

        

         Apply definition of *

 

            25   ALL(b):[2 e n & b e n => 2*b e n]

                  U Spec, 8

 

            26   2 e n & x e n => 2*x e n

                  U Spec, 25

 

            27   2 e n & x e n

                  Join, 4, 21

 

            28   2*x e n

                  Detach, 26, 27

 

            29   2 e n & y e n => 2*y e n

                  U Spec, 25

 

            30   2 e n & y e n

                  Join, 4, 23

 

            31   2*y e n

                  Detach, 29, 30

 

            32   ALL(b):ALL(c):[2*y e n & b e n & c e n => [2*y=c+b => 2*y-b=c]]

                  U Spec, 10, 31

 

            33   ALL(c):[2*y e n & 2*x e n & c e n => [2*y=c+2*x => 2*y-2*x=c]]

                  U Spec, 32, 28

 

            34   2*y e n & 2*x e n & 1 e n => [2*y=1+2*x => 2*y-2*x=1]

                  U Spec, 33

 

            35   2*y e n & 2*x e n

                  Join, 31, 28

 

            36   2*y e n & 2*x e n & 1 e n

                  Join, 35, 2

 

            37   2*y=1+2*x => 2*y-2*x=1

                  Detach, 34, 36

 

         As Required:

 

            38   2*y=2*x+1

                  Sym, 24

 

         Apply commutativity of +

 

            39   ALL(b):[2*x e n & b e n => 2*x+b=b+2*x]

                  U Spec, 7, 28

 

            40   2*x e n & 1 e n => 2*x+1=1+2*x

                  U Spec, 39

 

            41   2*x e n & 1 e n

                  Join, 28, 2

 

            42   2*x+1=1+2*x

                  Detach, 40, 41

 

         As Required:

 

            43   2*y=1+2*x

                  Substitute, 42, 38

 

            44   2*y-2*x=1

                  Detach, 37, 43

 

         Apply property of <

 

            45   ALL(b):ALL(c):[2 e n & b e n & c e n => [c<b => 2*(b-c)=2*b-2*c]]

                  U Spec, 14

 

            46   ALL(c):[2 e n & y e n & c e n => [c<y => 2*(y-c)=2*y-2*c]]

                  U Spec, 45

 

            47   2 e n & y e n & x e n => [x<y => 2*(y-x)=2*y-2*x]

                  U Spec, 46

 

            48   2 e n & y e n

                  Join, 4, 23

 

            49   2 e n & y e n & x e n

                  Join, 48, 21

 

            50   x<y => 2*(y-x)=2*y-2*x

                  Detach, 47, 49

 

         Prove: x<y

        

         Apply definition of <

 

            51   ALL(b):[2*x e n & b e n => [2*x<b <=> EXIST(c):[c e n & ~c=0 & 2*x+c=b]]]

                  U Spec, 12, 28

 

            52   2*x e n & 2*y e n => [2*x<2*y <=> EXIST(c):[c e n & ~c=0 & 2*x+c=2*y]]

                  U Spec, 51, 31

 

            53   2*x e n & 2*y e n

                  Join, 28, 31

 

            54   2*x<2*y <=> EXIST(c):[c e n & ~c=0 & 2*x+c=2*y]

                  Detach, 52, 53

 

            55   [2*x<2*y => EXIST(c):[c e n & ~c=0 & 2*x+c=2*y]]

             & [EXIST(c):[c e n & ~c=0 & 2*x+c=2*y] => 2*x<2*y]

                  Iff-And, 54

 

            56   EXIST(c):[c e n & ~c=0 & 2*x+c=2*y] => 2*x<2*y

                  Split, 55

 

            57   1 e n & ~1=0

                  Join, 2, 3

 

            58   1 e n & ~1=0 & 2*x+1=2*y

                  Join, 57, 24

 

            59   EXIST(c):[c e n & ~c=0 & 2*x+c=2*y]

                  E Gen, 58

 

            60   2*x<2*y

                  Detach, 56, 59

 

         Apply property of <

 

            61   ALL(b):ALL(c):[2 e n & b e n & c e n & ~2=0 => [2*b<2*c => b<c]]

                  U Spec, 13

 

            62   ALL(c):[2 e n & x e n & c e n & ~2=0 => [2*x<2*c => x<c]]

                  U Spec, 61

 

            63   2 e n & x e n & y e n & ~2=0 => [2*x<2*y => x<y]

                  U Spec, 62

 

            64   2 e n & x e n

                  Join, 4, 21

 

            65   2 e n & x e n & y e n

                  Join, 64, 23

 

            66   2 e n & x e n & y e n & ~2=0

                  Join, 65, 5

 

            67   2*x<2*y => x<y

                  Detach, 63, 66

 

         As Required:

 

            68   x<y

                  Detach, 67, 60

 

            69   2*(y-x)=2*y-2*x

                  Detach, 50, 68

 

            70   2*(y-x)=1

                  Substitute, 69, 44

 

         Apply property of -

 

            71   ALL(b):[y e n & b e n => [b<y => y-b e n]]

                  U Spec, 11

 

            72   y e n & x e n => [x<y => y-x e n]

                  U Spec, 71

 

            73   y e n & x e n

                  Join, 23, 21

 

            74   x<y => y-x e n

                  Detach, 72, 73

 

            75   y-x e n

                  Detach, 74, 68

 

            76   y-x e n & 2*(y-x)=1

                  Join, 75, 70

 

            77   EXIST(a):[a e n & 2*a=1]

                  E Gen, 76

 

            78   EXIST(a):[a e n & 2*a=1]

             & ~EXIST(a):[a e n & 2*a=1]

                  Join, 77, 9

 

    As Required:

 

      79   ~EXIST(b):[b e n & 2*x+1=2*b]

            4 Conclusion, 22

 

 

LEMMA

*****

 

80   ALL(a):[a e n => ~EXIST(b):[b e n & 2*a+1=2*b]]

      4 Conclusion, 21

 

   

    Prove: ALL(a):[a e n => [a e even   => a+1 e odd]]

   

    Suppose...

 

      81   x e n

            Premise

 

         Prove: x e even => x+1 e odd

        

         Suppose...

 

            82   x e even

                  Premise

 

            83   x e n => [x e even <=> EXIST(b):[b e n & x=2*b]]

                  U Spec, 17

 

            84   x e even <=> EXIST(b):[b e n & x=2*b]

                  Detach, 83, 81

 

            85   [x e even => EXIST(b):[b e n & x=2*b]]

             & [EXIST(b):[b e n & x=2*b] => x e even]

                  Iff-And, 84

 

            86   x e even => EXIST(b):[b e n & x=2*b]

                  Split, 85

 

            87   EXIST(b):[b e n & x=2*b]

                  Detach, 86, 82

 

            88   y e n & x=2*y

                  E Spec, 87

 

            89   y e n

                  Split, 88

 

            90   x=2*y

                  Split, 88

 

            91   ALL(b):[x e n & b e n => x+b e n]

                  U Spec, 6

 

            92   x e n & 1 e n => x+1 e n

                  U Spec, 91

 

            93   x e n & 1 e n

                  Join, 81, 2

 

            94   x+1 e n

                  Detach, 92, 93

 

            95   x+1 e n => [x+1 e odd <=> ~x+1 e even]

                  U Spec, 20, 94

 

            96   x+1 e odd <=> ~x+1 e even

                  Detach, 95, 94

 

            97   [x+1 e odd => ~x+1 e even] & [~x+1 e even => x+1 e odd]

                  Iff-And, 96

 

         Sufficient: For x+1 e odd

 

            98   ~x+1 e even => x+1 e odd

                  Split, 97

 

            

             Prove: ~x+1 e even

            

             Suppose to the contrary...

 

                  99   x+1 e even

                        Premise

 

                  100  x+1 e n => [x+1 e even <=> EXIST(b):[b e n & x+1=2*b]]

                        U Spec, 17, 99

 

                  101  x+1 e even <=> EXIST(b):[b e n & x+1=2*b]

                        Detach, 100, 94

 

                  102  [x+1 e even => EXIST(b):[b e n & x+1=2*b]]

                 & [EXIST(b):[b e n & x+1=2*b] => x+1 e even]

                        Iff-And, 101

 

                  103  x+1 e even => EXIST(b):[b e n & x+1=2*b]

                        Split, 102

 

                  104  EXIST(b):[b e n & x+1=2*b]

                        Detach, 103, 99

 

             Apply lemma

 

                  105  y e n => ~EXIST(b):[b e n & 2*y+1=2*b]

                        U Spec, 80

 

                  106  ~EXIST(b):[b e n & 2*y+1=2*b]

                        Detach, 105, 89

 

                  107  EXIST(b):[b e n & 2*y+1=2*b]

                        Substitute, 90, 104

 

                  108  ~EXIST(b):[b e n & 2*y+1=2*b]

                 & EXIST(b):[b e n & 2*y+1=2*b]

                        Join, 106, 107

 

         As Required:

 

            109  ~x+1 e even

                  4 Conclusion, 99

 

            110  x+1 e odd

                  Detach, 98, 109

 

    As Required:

 

      111  x e even => x+1 e odd

            4 Conclusion, 82

 

 

THEOREM

*******

 

112  ALL(a):[a e n => [a e even => a+1 e odd]]

      4 Conclusion, 81

 

   

    Prove: ALL(a):[a e n => 2*a e even & 2*a+1 e odd]

   

    Suppose...

 

      113  x e n

            Premise

 

      114  ALL(b):[2 e n & b e n => 2*b e n]

            U Spec, 8

 

      115  2 e n & x e n => 2*x e n

            U Spec, 114

 

      116  2 e n & x e n

            Join, 4, 113

 

      117  2*x e n

            Detach, 115, 116

 

      118  2*x e n => [2*x e even <=> EXIST(b):[b e n & 2*x=2*b]]

            U Spec, 17, 117

 

      119  2*x e even <=> EXIST(b):[b e n & 2*x=2*b]

            Detach, 118, 117

 

      120  [2*x e even => EXIST(b):[b e n & 2*x=2*b]]

         & [EXIST(b):[b e n & 2*x=2*b] => 2*x e even]

            Iff-And, 119

 

    Sufficient: For 2*x e even

 

      121  EXIST(b):[b e n & 2*x=2*b] => 2*x e even

            Split, 120

 

      122  2*x=2*x

            Reflex, 117

 

      123  x e n & 2*x=2*x

            Join, 113, 122

 

      124  EXIST(b):[b e n & 2*x=2*b]

            E Gen, 123

 

      125  2*x e even

            Detach, 121, 124

 

      126  2*x e n => [2*x e even => 2*x+1 e odd]

            U Spec, 112, 125

 

      127  2*x e even => 2*x+1 e odd

            Detach, 126, 117

 

      128  2*x+1 e odd

            Detach, 127, 125

 

      129  2*x e even & 2*x+1 e odd

            Join, 125, 128

 

 

COROLLARY

*********

 

130  ALL(a):[a e n => 2*a e even & 2*a+1 e odd]

      4 Conclusion, 113