THEOREM

*******

 

Given the existence of a Dedekind infinite set, there exists a subset of it on which Peano's Axioms hold.

 

 

     EXIST(n):EXIST(s):EXIST(0):[

 

     0 e n                                                     PA1

 

     & ALL(a):[a e n => s(a) e n]                              PA2

 

     & ALL(a):ALL(b):[a e n & b e n => [s(a)=s(b) => a=b]]     PA3

 

     & ALL(a):[a e n => ~s(a)=0]                               PA4

 

     & ALL(p):[Set(p) & ALL(c):[c e p => c e n]                PA5 (Induction)

     => [0 e p & ALL(c):[c e p => s(c) e p]

     => ALL(a):[a e n => a e p]]]]

 

 

Dan Christensen

2023-02-19

http://www.dcproof.com

 

 

PROOF

*****

 

Let x be a Dedekind infinite set, i.e. there exists on it a function f that is injective

and not surjective.

 

1     Set(x)

      Axiom

 

f is a function mapping x to itself

 

2     ALL(a):[a e x => f(a) e x]

      Axiom

 

f is injective

 

3     ALL(a):ALL(b):[a e x & b e x => [f(a)=f(b) => a=b]]

      Axiom

 

f is not surjective

 

4     ~ALL(a):[a e x => EXIST(b):[b e x & f(b)=a]]

      Axiom

 

Change quanitifier, etc.

 

5     ~~EXIST(a):~[a e x => EXIST(b):[b e x & f(b)=a]]

      Quant, 4

 

6     EXIST(a):~[a e x => EXIST(b):[b e x & f(b)=a]]

      Rem DNeg, 5

 

7     EXIST(a):~~[a e x & ~EXIST(b):[b e x & f(b)=a]]

      Imply-And, 6

 

8     EXIST(a):[a e x & ~EXIST(b):[b e x & f(b)=a]]

      Rem DNeg, 7

 

9     EXIST(a):[a e x & ~~ALL(b):~[b e x & f(b)=a]]

      Quant, 8

 

10   EXIST(a):[a e x & ALL(b):~[b e x & f(b)=a]]

      Rem DNeg, 9

 

11   EXIST(a):[a e x & ALL(b):~~[b e x => ~f(b)=a]]

      Imply-And, 10

 

12   EXIST(a):[a e x & ALL(b):[b e x => ~f(b)=a]]

      Rem DNeg, 11

 

13   x0 e x & ALL(b):[b e x => ~f(b)=x0]

      E Spec, 12

 

As Required:

 

14   x0 e x

      Split, 13

 

15   ALL(b):[b e x => ~f(b)=x0]

      Split, 13

 

Apply Subset Axiom

 

16   EXIST(sub):[Set(sub) & ALL(a):[a e sub <=> a e x & ALL(b):[Set(b) & ALL(c):[c e b => c e x] & x0 e b & ALL(c):[c e b => f(c) e b] => a e b]]]

      Subset, 1

 

17   Set(n) & ALL(a):[a e n <=> a e x & ALL(b):[Set(b) & ALL(c):[c e b => c e x] & x0 e b & ALL(c):[c e b => f(c) e b] => a e b]]

      E Spec, 16

 

Define: n

 

18   Set(n)

      Split, 17

 

19   ALL(a):[a e n <=> a e x & ALL(b):[Set(b) & ALL(c):[c e b => c e x] & x0 e b & ALL(c):[c e b => f(c) e b] => a e b]]

      Split, 17

 

    Prove: ALL(a):[a e n => a e x]

   

    Suppose...

 

      20   t e n

            Premise

 

      21   t e n <=> t e x & ALL(b):[Set(b) & ALL(c):[c e b => c e x] & x0 e b & ALL(c):[c e b => f(c) e b] => t e b]

            U Spec, 19

 

      22   [t e n => t e x & ALL(b):[Set(b) & ALL(c):[c e b => c e x] & x0 e b & ALL(c):[c e b => f(c) e b] => t e b]]

         & [t e x & ALL(b):[Set(b) & ALL(c):[c e b => c e x] & x0 e b & ALL(c):[c e b => f(c) e b] => t e b] => t e n]

            Iff-And, 21

 

      23   t e n => t e x & ALL(b):[Set(b) & ALL(c):[c e b => c e x] & x0 e b & ALL(c):[c e b => f(c) e b] => t e b]

            Split, 22

 

      24   t e x & ALL(b):[Set(b) & ALL(c):[c e b => c e x] & x0 e b & ALL(c):[c e b => f(c) e b] => t e b]

            Detach, 23, 20

 

      25   t e x

            Split, 24

 

n is a subset of x

 

26   ALL(a):[a e n => a e x]

      4 Conclusion, 20

 

Apply definition of n

 

27   x0 e n <=> x0 e x & ALL(b):[Set(b) & ALL(c):[c e b => c e x] & x0 e b & ALL(c):[c e b => f(c) e b] => x0 e b]

      U Spec, 19

 

28   [x0 e n => x0 e x & ALL(b):[Set(b) & ALL(c):[c e b => c e x] & x0 e b & ALL(c):[c e b => f(c) e b] => x0 e b]]

    & [x0 e x & ALL(b):[Set(b) & ALL(c):[c e b => c e x] & x0 e b & ALL(c):[c e b => f(c) e b] => x0 e b] => x0 e n]

      Iff-And, 27

 

Sufficient: For x0 e n

 

29   x0 e x & ALL(b):[Set(b) & ALL(c):[c e b => c e x] & x0 e b & ALL(c):[c e b => f(c) e b] => x0 e b] => x0 e n

      Split, 28

 

    Prove: ALL(b):[Set(b) & ALL(c):[c e b => c e x] & x0 e b & ALL(c):[c e b => f(c) e b]

   

    Suppose...

 

      30   Set(b) & ALL(c):[c e b => c e x] & x0 e b & ALL(c):[c e b => f(c) e b]

            Premise

 

      31   x0 e b

            Split, 30

 

As Required:

 

32   ALL(b):[Set(b) & ALL(c):[c e b => c e x] & x0 e b & ALL(c):[c e b => f(c) e b]

    => x0 e b]

      4 Conclusion, 30

 

33   x0 e x

    & ALL(b):[Set(b) & ALL(c):[c e b => c e x] & x0 e b & ALL(c):[c e b => f(c) e b]

    => x0 e b]

      Join, 14, 32

 

PA1:

----

 

34   x0 e n

      Detach, 29, 33

 

    Prove: ALL(a):[a e n => f(a) e n]

   

    Suppose...

 

      35   t e n

            Premise

 

    Apply definition of n

 

      36   t e n <=> t e x & ALL(b):[Set(b) & ALL(c):[c e b => c e x] & x0 e b & ALL(c):[c e b => f(c) e b] => t e b]

            U Spec, 19

 

      37   [t e n => t e x & ALL(b):[Set(b) & ALL(c):[c e b => c e x] & x0 e b & ALL(c):[c e b => f(c) e b] => t e b]]

         & [t e x & ALL(b):[Set(b) & ALL(c):[c e b => c e x] & x0 e b & ALL(c):[c e b => f(c) e b] => t e b] => t e n]

            Iff-And, 36

 

      38   t e n => t e x & ALL(b):[Set(b) & ALL(c):[c e b => c e x] & x0 e b & ALL(c):[c e b => f(c) e b] => t e b]

            Split, 37

 

      39   t e x & ALL(b):[Set(b) & ALL(c):[c e b => c e x] & x0 e b & ALL(c):[c e b => f(c) e b] => t e b]

            Detach, 38, 35

 

      40   t e x

            Split, 39

 

      41   ALL(b):[Set(b) & ALL(c):[c e b => c e x] & x0 e b & ALL(c):[c e b => f(c) e b] => t e b]

            Split, 39

 

    Apply Axiom

 

      42   t e x => f(t) e x

            U Spec, 2

 

      43   f(t) e x

            Detach, 42, 40

 

    Apply definition of n

 

      44   f(t) e n <=> f(t) e x & ALL(b):[Set(b) & ALL(c):[c e b => c e x] & x0 e b & ALL(c):[c e b => f(c) e b] => f(t) e b]

            U Spec, 19, 43

 

      45   [f(t) e n => f(t) e x & ALL(b):[Set(b) & ALL(c):[c e b => c e x] & x0 e b & ALL(c):[c e b => f(c) e b] => f(t) e b]]

         & [f(t) e x & ALL(b):[Set(b) & ALL(c):[c e b => c e x] & x0 e b & ALL(c):[c e b => f(c) e b] => f(t) e b] => f(t) e n]

            Iff-And, 44

 

    Sufficient: For f(t) e n

 

      46   f(t) e x & ALL(b):[Set(b) & ALL(c):[c e b => c e x] & x0 e b & ALL(c):[c e b => f(c) e b] => f(t) e b] => f(t) e n

            Split, 45

 

         Prove: ALL(b):[Set(b) & ALL(c):[c e b => c e x] & x0 e b & ALL(c):[c e b => f(c) e b]

                => f(t) e b]

        

         Suppose...

 

            47   Set(u) & ALL(c):[c e u => c e x] & x0 e u & ALL(c):[c e u => f(c) e u]

                  Premise

 

            48   Set(u)

                  Split, 47

 

            49   ALL(c):[c e u => c e x]

                  Split, 47

 

            50   x0 e u

                  Split, 47

 

            51   ALL(c):[c e u => f(c) e u]

                  Split, 47

 

            52   Set(u) & ALL(c):[c e u => c e x] & x0 e u & ALL(c):[c e u => f(c) e u] => t e u

                  U Spec, 41

 

            53   t e u

                  Detach, 52, 47

 

            54   t e u => f(t) e u

                  U Spec, 51

 

            55   f(t) e u

                  Detach, 54, 53

 

    As Required:

 

      56   ALL(b):[Set(b) & ALL(c):[c e b => c e x] & x0 e b & ALL(c):[c e b => f(c) e b]

         => f(t) e b]

            4 Conclusion, 47

 

      57   f(t) e x

         & ALL(b):[Set(b) & ALL(c):[c e b => c e x] & x0 e b & ALL(c):[c e b => f(c) e b]

         => f(t) e b]

            Join, 43, 56

 

      58   f(t) e n

            Detach, 46, 57

 

PA2:

----

 

59   ALL(a):[a e n => f(a) e n]

      4 Conclusion, 35

 

    Prove: ALL(a):ALL(b):[a e n & b e n => [f(a)=f(b) => a=b]]

   

    Suppose...

 

      60   t e n & u e n

            Premise

 

      61   t e n

            Split, 60

 

      62   u e n

            Split, 60

 

      63   ALL(b):[t e x & b e x => [f(t)=f(b) => t=b]]

            U Spec, 3

 

      64   t e x & u e x => [f(t)=f(u) => t=u]

            U Spec, 63

 

      65   t e n => t e x

            U Spec, 26

 

      66   t e x

            Detach, 65, 61

 

      67   u e n => u e x

            U Spec, 26

 

      68   u e x

            Detach, 67, 62

 

      69   t e x & u e x

            Join, 66, 68

 

      70   f(t)=f(u) => t=u

            Detach, 64, 69

 

PA3:

----

 

71   ALL(a):ALL(b):[a e n & b e n => [f(a)=f(b) => a=b]]

      4 Conclusion, 60

 

    Prove: ALL(a):[a e n => ~f(a)=x0]

   

    Suppose...

 

      72   t e n

            Premise

 

      73   t e x => ~f(t)=x0

            U Spec, 15

 

      74   t e n => t e x

            U Spec, 26

 

      75   t e x

            Detach, 74, 72

 

      76   ~f(t)=x0

            Detach, 73, 75

 

PA4:

----

 

77   ALL(a):[a e n => ~f(a)=x0]

      4 Conclusion, 72

 

    Prove: ALL(p):[Set(p) & ALL(c):[c e p => c e n]

           => [x0 e p & ALL(c):[c e p => f(c) e p]

           => ALL(a):[a e n => a e p]]]

   

    Suppose p is a subset of n

 

      78   Set(p) & ALL(c):[c e p => c e n]

            Premise

 

         Prove: x0 e p & ALL(c):[c e p => f(c) e p]

                => ALL(a):[a e n => a e p]

        

         Suppose...

 

            79   x0 e p & ALL(c):[c e p => f(c) e p]

                  Premise

 

            80   Set(p)

                  Split, 78

 

            81   ALL(c):[c e p => c e n]

                  Split, 78

 

            82   x0 e p

                  Split, 79

 

            83   ALL(c):[c e p => f(c) e p]

                  Split, 79

 

             Prove: ALL(b):[b e n => b e p]

            

             Suppose...

 

                  84   t e n

                        Premise

 

                  85   t e n <=> t e x & ALL(b):[Set(b) & ALL(c):[c e b => c e x] & x0 e b & ALL(c):[c e b => f(c) e b] => t e b]

                        U Spec, 19

 

                  86   [t e n => t e x & ALL(b):[Set(b) & ALL(c):[c e b => c e x] & x0 e b & ALL(c):[c e b => f(c) e b] => t e b]]

                 & [t e x & ALL(b):[Set(b) & ALL(c):[c e b => c e x] & x0 e b & ALL(c):[c e b => f(c) e b] => t e b] => t e n]

                        Iff-And, 85

 

                  87   t e n => t e x & ALL(b):[Set(b) & ALL(c):[c e b => c e x] & x0 e b & ALL(c):[c e b => f(c) e b] => t e b]

                        Split, 86

 

                  88   t e x & ALL(b):[Set(b) & ALL(c):[c e b => c e x] & x0 e b & ALL(c):[c e b => f(c) e b] => t e b]

                        Detach, 87, 84

 

                  89   t e x

                        Split, 88

 

                  90   ALL(b):[Set(b) & ALL(c):[c e b => c e x] & x0 e b & ALL(c):[c e b => f(c) e b] => t e b]

                        Split, 88

 

             Sufficient: For t e p

 

                  91   Set(p) & ALL(c):[c e p => c e x] & x0 e p & ALL(c):[c e p => f(c) e p] => t e p

                        U Spec, 90

 

                 Prove: ALL(a):[a e n => a e p]

                

                 Suppose...

 

                        92   u e p

                              Premise

 

                        93   u e p => u e n

                              U Spec, 81

 

                        94   u e n

                              Detach, 93, 92

 

                        95   u e n => u e x

                              U Spec, 26

 

                        96   u e x

                              Detach, 95, 94

 

             As Required:

 

                  97   ALL(c):[c e p => c e x]

                        4 Conclusion, 92

 

                  98   Set(p) & ALL(c):[c e p => c e x]

                        Join, 80, 97

 

                  99   Set(p) & ALL(c):[c e p => c e x] & x0 e p

                        Join, 98, 82

 

                  100  Set(p) & ALL(c):[c e p => c e x] & x0 e p

                 & ALL(c):[c e p => f(c) e p]

                        Join, 99, 83

 

                  101  t e p

                        Detach, 91, 100

 

         As Required:

 

            102  ALL(a):[a e n => a e p]

                  4 Conclusion, 84

 

    As Required:

 

      103  x0 e p & ALL(c):[c e p => f(c) e p]

         => ALL(a):[a e n => a e p]

            4 Conclusion, 79

 

PA5:

----

 

104  ALL(p):[Set(p) & ALL(c):[c e p => c e n]

    => [x0 e p & ALL(c):[c e p => f(c) e p]

    => ALL(a):[a e n => a e p]]]

      4 Conclusion, 78

 

105  x0 e n & ALL(a):[a e n => f(a) e n]

      Join, 34, 59

 

106  x0 e n & ALL(a):[a e n => f(a) e n]

    & ALL(a):ALL(b):[a e n & b e n => [f(a)=f(b) => a=b]]

      Join, 105, 71

 

107  x0 e n & ALL(a):[a e n => f(a) e n]

    & ALL(a):ALL(b):[a e n & b e n => [f(a)=f(b) => a=b]]

    & ALL(a):[a e n => ~f(a)=x0]

      Join, 106, 77

 

108  x0 e n & ALL(a):[a e n => f(a) e n]

    & ALL(a):ALL(b):[a e n & b e n => [f(a)=f(b) => a=b]]

    & ALL(a):[a e n => ~f(a)=x0]

    & ALL(p):[Set(p) & ALL(c):[c e p => c e n]

    => [x0 e p & ALL(c):[c e p => f(c) e p]

    => ALL(a):[a e n => a e p]]]

      Join, 107, 104

 

109  EXIST(0):[0 e n & ALL(a):[a e n => f(a) e n]

    & ALL(a):ALL(b):[a e n & b e n => [f(a)=f(b) => a=b]]

    & ALL(a):[a e n => ~f(a)=0]

    & ALL(p):[Set(p) & ALL(c):[c e p => c e n]

    => [0 e p & ALL(c):[c e p => f(c) e p]

    => ALL(a):[a e n => a e p]]]]

      E Gen, 108

 

110  EXIST(s):EXIST(0):[0 e n & ALL(a):[a e n => s(a) e n]

    & ALL(a):ALL(b):[a e n & b e n => [s(a)=s(b) => a=b]]

    & ALL(a):[a e n => ~s(a)=0]

    & ALL(p):[Set(p) & ALL(c):[c e p => c e n]

    => [0 e p & ALL(c):[c e p => s(c) e p]

    => ALL(a):[a e n => a e p]]]]

      E Gen, 109

 

As Required:

 

111  EXIST(n):EXIST(s):EXIST(0):[0 e n & ALL(a):[a e n => s(a) e n]

    & ALL(a):ALL(b):[a e n & b e n => [s(a)=s(b) => a=b]]

    & ALL(a):[a e n => ~s(a)=0]

    & ALL(p):[Set(p) & ALL(c):[c e p => c e n]

    => [0 e p & ALL(c):[c e p => s(c) e p]

    => ALL(a):[a e n => a e p]]]]

      E Gen, 110