What is zero?

-------------

 

From the field axioms, we prove:

 

1. ALL(a):[a e real => [a=0 <=> EXIST(b):[b e real & a+b=b]]]

2. ALL(a):[a e real => [a=0 <=> a+a=0]]

 

 

This proof was written with the aid of DC Proof 2.0

Download at http://www.dcproof.com

 

 

The Field Axioms

----------------

 

real is a set

 

1     Set(real)

      Axiom

 

Define: + operator (addition)

 

2     ALL(a):ALL(b):[a e real & b e real => a+b e real]

      Axiom

 

+ is associative

 

3     ALL(a):ALL(b):ALL(c):[a e real & b e real & c e real => a+b+c=a+(b+c)]

      Axiom

 

+ is commutative

 

4     ALL(a):ALL(b):[a e real & b e real => a+b=b+a]

      Axiom

 

Define: 0, the additive identity element

 

5     0 e real

      Axiom

 

6     ALL(a):[a e real => a+0=a]

      Axiom

 

Define: _ operator, the additive inverse (not be confused with subtraction)

 

7     ALL(a):[a e real => _a e real]

      Axiom

 

8     ALL(a):[a e real => a+_a=0]

      Axiom

 

Define: * operator (multiplication)

 

9     ALL(a):ALL(b):[a e real & b e real => a*b e real]

      Axiom

 

* is associative

 

10    ALL(a):ALL(b):ALL(c):[a e real & b e real & c e real => a*b*c=a*(b*c)]

      Axiom

 

* is commutative

 

11    ALL(a):ALL(b):[a e real & b e real => a*b=b*a]

      Axiom

 

* is distributive over +

 

12    ALL(a):ALL(b):ALL(c):[a e real & b e real & c e real => a*(b+c)=a*b+a*c]

      Axiom

 

Define: 1, the multiplicative identity element

 

13    1 e real

      Axiom

 

14    ~0=1

      Axiom

 

15    ALL(a):[a e real => a*1=a]

      Axiom

 

Define: recip operator (multiplicative inverse)

 

16    ALL(a):[a e real & ~a=0 => recip(a) e real]

      Axiom

 

17    ALL(a):[a e real & ~a=0 => a*recip(a)=1]

      Axiom

 

    

     Theorem #1

     ----------

    

     Prove: ALL(a):[a e real => [a=0 <=> EXIST(b):[b e real & a+b=b]]]

    

     Suppose...

 

      18    x e real

            Premise

 

         

          Prove: x=0 => EXIST(b):[b e real & x+b=b]

         

          Suppose...

 

            19    x=0

                  Premise

 

          Apply definition of 0

 

            20    x e real => x+0=x

                  U Spec, 6

 

            21    x+0=x

                  Detach, 20, 18

 

            22    x+0=0

                  Substitute, 19, 21

 

            23    0 e real & x+0=0

                  Join, 5, 22

 

            24    EXIST(b):[b e real & x+b=b]

                  E Gen, 23

 

     As Required:

 

      25    x=0 => EXIST(b):[b e real & x+b=b]

            4 Conclusion, 19

 

         

          Prove: EXIST(b):[b e real & x+b=b] => x=0

         

          Suppose...

 

            26    EXIST(b):[b e real & x+b=b]

                  Premise

 

            27    y e real & x+y=y

                  E Spec, 26

 

            28    y e real

                  Split, 27

 

            29    x+y=y

                  Split, 27

 

            Add _y to both sides.

 

            30    y+_y=y+_y

                  Reflex

 

            31    x+y+_y=y+_y

                  Substitute, 29, 30

 

          Apply associativity of +

 

            32    ALL(b):ALL(c):[x e real & b e real & c e real => x+b+c=x+(b+c)]

                  U Spec, 3

 

            33    ALL(c):[x e real & y e real & c e real => x+y+c=x+(y+c)]

                  U Spec, 32

 

            34    x e real & y e real & _y e real => x+y+_y=x+(y+_y)

                  U Spec, 33

 

          Apply definition of '_'

 

            35    y e real => _y e real

                  U Spec, 7

 

            36    _y e real

                  Detach, 35, 28

 

            37    x e real & y e real

                  Join, 18, 28

 

            38    x e real & y e real & _y e real

                  Join, 37, 36

 

            39    x+y+_y=x+(y+_y)

                  Detach, 34, 38

 

            40    x+(y+_y)=y+_y

                  Substitute, 39, 31

 

          Apply definition of '_'

 

            41    y e real => y+_y=0

                  U Spec, 8

 

            42    y+_y=0

                  Detach, 41, 28

 

            43    x+0=0

                  Substitute, 42, 40

 

            44    x e real => x+0=x

                  U Spec, 6

 

            45    x+0=x

                  Detach, 44, 18

 

            46    x=0

                  Substitute, 45, 43

 

     As Required:

 

      47    EXIST(b):[b e real & x+b=b] => x=0

            4 Conclusion, 26

 

     Combining results...

 

      48    [x=0 => EXIST(b):[b e real & x+b=b]]

          & [EXIST(b):[b e real & x+b=b] => x=0]

            Join, 25, 47

 

      49    x=0 <=> EXIST(b):[b e real & x+b=b]

            Iff-And, 48

 

 

Theorem #1

----------

 

As Required:

 

50    ALL(a):[a e real => [a=0 <=> EXIST(b):[b e real & a+b=b]]]

      4 Conclusion, 18

 

    

     Theorem #2

     ----------

    

     Prove: ALL(a):[a e real => [a=0 <=> a+a=a]]

    

     Suppose...

 

      51    x e real

            Premise

 

          Prove: x=0 => x+x=x

         

          Suppose...

 

            52    x=0

                  Premise

 

          Apply definition of 0

 

            53    0 e real => 0+0=0

                  U Spec, 6

 

            54    0+0=0

                  Detach, 53, 5

 

            55    x+x=x

                  Substitute, 52, 54

 

     As Required:

 

      56    x=0 => x+x=x

            4 Conclusion, 52

 

          Prove: x+x=x => x=0

         

          Suppose...

 

            57    x+x=x

                  Premise

 

          Add _x to both sides

 

            58    x+_x=x+_x

                  Reflex

 

            59    x+x+_x=x+_x

                  Substitute, 57, 58

 

          Appy associativity of +

 

            60    ALL(b):ALL(c):[x e real & b e real & c e real => x+b+c=x+(b+c)]

                  U Spec, 3

 

            61    ALL(c):[x e real & x e real & c e real => x+x+c=x+(x+c)]

                  U Spec, 60

 

            62    x e real & x e real & _x e real => x+x+_x=x+(x+_x)

                  U Spec, 61

 

            63    x e real => _x e real

                  U Spec, 7

 

            64    _x e real

                  Detach, 63, 51

 

            65    x e real & x e real

                  Join, 51, 51

 

            66    x e real & x e real & _x e real

                  Join, 65, 64

 

            67    x+x+_x=x+(x+_x)

                  Detach, 62, 66

 

            68    x+(x+_x)=x+_x

                  Substitute, 67, 59

 

          Apply definition of '_'

 

            69    x e real => x+_x=0

                  U Spec, 8

 

            70    x+_x=0

                  Detach, 69, 51

 

            71    x+0=0

                  Substitute, 70, 68

 

          Apply definiton of 0

 

            72    x e real => x+0=x

                  U Spec, 6

 

            73    x+0=x

                  Detach, 72, 51

 

            74    x=0

                  Substitute, 73, 71

 

     As Required:

 

      75    x+x=x => x=0

            4 Conclusion, 57

 

     Combining results...

 

      76    [x=0 => x+x=x] & [x+x=x => x=0]

            Join, 56, 75

 

      77    x=0 <=> x+x=x

            Iff-And, 76

 

 

Theorem #2

----------

 

As Required:

 

78    ALL(a):[a e real => [a=0 <=> a+a=a]]

      4 Conclusion, 51