Constructing the Postive Rational Numbers Q+ from N
Introduction
------------
Here, we construct the set of postive rational numbers qpos from the set of
natural numbers using only the axioms of set theory.
In DC Proof, there are only 3 ways to construct a set from other sets:
1. The Cartesian Product Axiom
2. The Power Set Axiom
3. The Subset Axiom
Each of these axioms are used here.
We begin with a list of Peano-like axioms for the set of natural numbers n, with
operators + and * defined on n. Then we use the Cartesian Product Axiom to construct
the set n2, the set of ordered pairs of natural numbers. Then we use the Power Set
Axiom to construct the set pn2, the power set of n2. Finally, we use the Subset Axiom
to construct qpos, a subset of pn2 that will comprise the set of postive rational
numbers.
Informally: 1/2 = {(1,2), (2,4), (3,6)...}
2/3 = {(2,3), (4,6), (6,9)...}
etc.
Axioms of the natural numbers
-----------------------------
Introduce n, 1, +, *
1 Set(n)
Axiom
2 1 ε n
Axiom
Define: '+' on n
3 ALL(a):ALL(b):[a ε n & b ε n => a+b ε n]
Axiom
4 ALL(a):[a ε n => ~a+1=1]
Axiom
5 ALL(a):ALL(b):[a ε n & b ε n & a+1=b+1 => a=b]
Axiom
6 ALL(a):ALL(b):[a ε n & b ε n => a+(b+1)=a+b+1]
Axiom
Principle of mathematical induction
7 ALL(a):[Set(a) & 1 ε a & ALL(b):[b ε n & b ε a => b+1 ε a] => ALL(b):[b ε n => b ε a]]
Axiom
Define: '*' on n
8 ALL(a):ALL(b):[a ε n & b ε n => a*b ε n]
Axiom
9 ALL(a):[a ε n => a*1=a]
Axiom
10 ALL(a):ALL(b):[a ε n & b ε n => a*(b+1)=a*b+a]
Axiom
Use the Cartesian Product Axiom to construct the set of ordered pairs of natural numbers
11 ALL(a1):ALL(a2):[Set(a1) & Set(a2) => EXIST(b):[Set'(b) & ALL(c1):ALL(c2):[(c1,c2) ε b <=> c1 ε a1 & c2 ε a2]]]
Cart Prod
12 ALL(a2):[Set(n) & Set(a2) => EXIST(b):[Set'(b) & ALL(c1):ALL(c2):[(c1,c2) ε b <=> c1 ε n & c2 ε a2]]]
U Spec, 11
13 Set(n) & Set(n) => EXIST(b):[Set'(b) & ALL(c1):ALL(c2):[(c1,c2) ε b <=> c1 ε n & c2 ε n]]
U Spec, 12
14 Set(n) & Set(n)
Join, 1, 1
15 EXIST(b):[Set'(b) & ALL(c1):ALL(c2):[(c1,c2) ε b <=> c1 ε n & c2 ε n]]
Detach, 13, 14
16 Set'(n2) & ALL(c1):ALL(c2):[(c1,c2) ε n2 <=> c1 ε n & c2 ε n]
E Spec, 15
Define: n2, the set of ordered pairs of natural numbers
17 Set'(n2)
Split, 16
18 ALL(c1):ALL(c2):[(c1,c2) ε n2 <=> c1 ε n & c2 ε n]
Split, 16
Use the Power Set axiom to construct the powerset of n2
19 ALL(a):[Set'(a) => EXIST(b):[Set(b)
& ALL(c):[c ε b <=> Set'(c) & ALL(d1):ALL(d2):[(d1,d2) ε c => (d1,d2) ε a]]]]
Power Set
20 Set'(n2) => EXIST(b):[Set(b)
& ALL(c):[c ε b <=> Set'(c) & ALL(d1):ALL(d2):[(d1,d2) ε c => (d1,d2) ε n2]]]
U Spec, 19
21 EXIST(b):[Set(b)
& ALL(c):[c ε b <=> Set'(c) & ALL(d1):ALL(d2):[(d1,d2) ε c => (d1,d2) ε n2]]]
Detach, 20, 17
22 Set(pn2)
& ALL(c):[c ε pn2 <=> Set'(c) & ALL(d1):ALL(d2):[(d1,d2) ε c => (d1,d2) ε n2]]
E Spec, 21
Define: pn2, the power set of n2
23 Set(pn2)
Split, 22
24 ALL(c):[c ε pn2 <=> Set'(c) & ALL(d1):ALL(d2):[(d1,d2) ε c => (d1,d2) ε n2]]
Split, 22
Use the Subset Axiom to construct the set of postive rational numbers
25 EXIST(sub):[Set(sub) & ALL(a):[a ε sub <=> a ε pn2 & [EXIST(b):EXIST(c):(b,c) ε a
& ALL(b):ALL(c):ALL(d):ALL(e):[(b,c) ε a & d ε n & e ε n => [(d,e) ε a <=> b*e=d*c]]]]]
Subset, 23
Define: qpos, the set of postive rational numbers
Informally: 1/2 = {(1,2), (2,4), (3,6)...}
2/3 = {(2,3), (4,6), (6,9)...}
etc.
26 Set(qpos) & ALL(a):[a ε qpos <=> a ε pn2 & [EXIST(b):EXIST(c):(b,c) ε a
& ALL(b):ALL(c):ALL(d):ALL(e):[(b,c) ε a & d ε n & e ε n => [(d,e) ε a <=> b*e=d*c]]]]
E Spec, 25