THEOREM

*******

 

ALL(a):ALL(b):[a e n & b e n => [~a=0 & ~b=0 => 0^a * 0^b = 0^(a+b)]]

 

 

This machine-verified, formal proof was written with the aid of the author's DC Proof 2.0 freeware available at http://www.dcproof

 

Dan Christensen

2019-10-26

 

 

AXIOMS/DEFINTITIONS

*******************

 

Define: n, 0, 1

 

1     Set(n)

      Axiom

 

2     0 e n

      Axiom

 

3     1 e n

      Axiom

 

 

Properties of +

***************

 

Closed on n

 

4     ALL(a):ALL(b):[a e n & b e n => a+b e n]

      Axiom

 

Adding 0

 

5     ALL(a):[a e n => a+0=a]

      Axiom

 

+ Commutative

 

6     ALL(a):ALL(b):[a e n & b e n => a+b=b+a]

      Axiom

 

7     ALL(a):ALL(b):[a e n & b e n => [~a=0 & ~b=0 => ~a+b=0]]

      Axiom

 

 

Principle of Mathematical Induction

***********************************

 

8     ALL(a):[Set(a) & ALL(b):[b e a => b e n]

    => [0 e a & ALL(b):[b e a => b+1 e a]

    => ALL(b):[b e n => b e a]]]

      Axiom

 

 

Properties of *

***************

 

Closed on n

 

9     ALL(a):ALL(b):[a e n & b e n => a*b e n]

      Axiom

 

Multiplying by 0

 

10   ALL(a):[a e n => a*0=0]

      Axiom

 

Multiplying by 1

 

11   ALL(a):[a e n => a*1=a]

      Axiom

 

* Commutative

 

12   ALL(a):ALL(b):[a e n & b e n => a*b=b*a]

      Axiom

 

 

Define: ^ on n

**************

 

13   ALL(a):ALL(b):[a e n & b e n => [~[a=0 & b=0] => a^b e n]]

      Axiom

 

14   0^1=0

      Axiom

 

15   ALL(a):[a e n => [~a=0 => a^0=1]]

      Axiom

 

16   ALL(a):ALL(b):[a e n & b e n

    => [~[a=0 & b=0] => a^(b+1)=a^b*a]]

      Axiom

 

 

Previous Result

***************

 

Zero Exponents

 

 

17   ALL(a):[a e n => [~a=0 => 0^a=0]]                          Proof

      Axiom

 

   

    Suppose...

 

      18   x e n & y e n

            Premise

 

      19   x e n

            Split, 18

 

      20   y e n

            Split, 18

 

        

         Prove: ~x=0 & ~y=0 => 0^x*0^y=0^(x+y)

        

         Suppose...

 

            21   ~x=0 & ~y=0

                  Premise

 

            22   ~x=0

                  Split, 21

 

            23   ~y=0

                  Split, 21

 

         Apply definition of ^ on n

 

            24   x e n => [~x=0 => 0^x=0]

                  U Spec, 17

 

            25   ~x=0 => 0^x=0

                  Detach, 24, 19

 

            26   0^x=0

                  Detach, 25, 22

 

         Apply definition of ^ on n

 

            27   y e n => [~y=0 => 0^y=0]

                  U Spec, 17

 

            28   ~y=0 => 0^y=0

                  Detach, 27, 20

 

            29   0^y=0

                  Detach, 28, 23

 

            30   0^x e n

                  Substitute, 26, 2

 

            31   0^y e n

                  Substitute, 29, 2

 

            32   0 e n => 0*0=0

                  U Spec, 10

 

            33   0*0=0

                  Detach, 32, 2

 

            34   0^x*0=0

                  Substitute, 26, 33

 

            35   0^x*0^y=0

                  Substitute, 29, 34

 

            36   ALL(b):[x e n & b e n => x+b e n]

                  U Spec, 4

 

            37   x e n & y e n => x+y e n

                  U Spec, 36

 

            38   x+y e n

                  Detach, 37, 18

 

         Apply definition of ^ on n

 

            39   x+y e n => [~x+y=0 => 0^(x+y)=0]

                  U Spec, 17, 38

 

            40   ALL(b):[x e n & b e n => [~x=0 & ~b=0 => ~x+b=0]]

                  U Spec, 7

 

            41   x e n & y e n => [~x=0 & ~y=0 => ~x+y=0]

                  U Spec, 40

 

            42   ~x=0 & ~y=0 => ~x+y=0

                  Detach, 41, 18

 

            43   ~x+y=0

                  Detach, 42, 21

 

            44   x+y e n => [~x+y=0 => 0^(x+y)=0]

                  U Spec, 17, 38

 

            45   ~x+y=0 => 0^(x+y)=0

                  Detach, 44, 38

 

            46   0^(x+y)=0

                  Detach, 45, 43

 

            47   0^x*0^y=0^(x+y)

                  Substitute, 46, 35

 

    As Required:

 

      48   ~x=0 & ~y=0 => 0^x*0^y=0^(x+y)

            4 Conclusion, 21

 

 

As Required:

 

49   ALL(a):ALL(b):[a e n & b e n => [~a=0 & ~b=0 => 0^a*0^b=0^(a+b)]]

      4 Conclusion, 18