THEOREM

*******

 

Powers of non-zero bases are non-zero  

 

ALL(a):ALL(b):[a e n & b e n => [~a=0 => ~a^b=0]]

 

 

This machine-verified, formal proof was written with the aid of the author's DC Proof 2.0 freeware available at http://www.dcproof.com

 

Dan Christensen

2019-11-10

 

 

AXIOMS/DEFINTITIONS

*******************

 

Define: n, 0, 1

 

1     Set(n)

      Axiom

 

2     0 e n

      Axiom

 

3     1 e n

      Axiom

 

4     ~1=0

      Axiom

 

 

Properties of +

***************

 

Closed on n

 

5     ALL(a):ALL(b):[a e n & b e n => a+b e n]

      Axiom

 

 

Properties of *

***************

 

Closed on n

 

6     ALL(a):ALL(b):[a e n & b e n => a*b e n]

      Axiom

 

7     ALL(a):ALL(b):[a e n & b e n => [~a=0 & ~b=0 => ~a*b=0]]

      Axiom

 

 

Induction principle

*******************

 

8     ALL(a):[Set(a) & ALL(b):[b e a => b e n]

    => [0 e a & ALL(b):[b e a => b+1 e a]

    => ALL(b):[b e n => b e a]]]

      Axiom

 

 

Define: ^ on n

**************

 

9     ALL(a):ALL(b):[a e n & b e n => [~[a=0 & b=0] => a^b e n]]

      Axiom

 

10   0^1=0

      Axiom

 

11   ALL(a):[a e n => [~a=0 => a^0=1]]

      Axiom

 

12   ALL(a):ALL(b):[a e n & b e n

    => [~[a=0 & b=0] => a^(b+1)=a^b*a]]

      Axiom

 

   

    PROOF

    *****

   

    Prove: ALL(a):[a e n => [~a=0 => ALL(b):[b e n => ~a^b=0]]]

   

    Suppose...

 

      13   x e n

            Premise

 

        

         Prove: ~x=0 => ALL(b):[b e n => ~x^b=0]

        

         Suppose...

 

            14   ~x=0

                  Premise

 

         Construct set p for proof by induction

 

            15   EXIST(sub):[Set(sub) & ALL(b):[b e sub <=> b e n & ~x^b=0]]

                  Subset, 1

 

            16   Set(p) & ALL(b):[b e p <=> b e n & ~x^b=0]

                  E Spec, 15

 

        

         Define: p

 

            17   Set(p)

                  Split, 16

 

            18   ALL(b):[b e p <=> b e n & ~x^b=0]

                  Split, 16

 

         Apply induction principle

 

            19   Set(p) & ALL(b):[b e p => b e n]

             => [0 e p & ALL(b):[b e p => b+1 e p]

             => ALL(b):[b e n => b e p]]

                  U Spec, 8

 

            

             Prove: ALL(b):[b e p => b e n]

            

             Suppose...

 

                  20   t e p

                        Premise

 

             Apply definition of p

 

                  21   t e p <=> t e n & ~x^t=0

                        U Spec, 18

 

                  22   [t e p => t e n & ~x^t=0] & [t e n & ~x^t=0 => t e p]

                        Iff-And, 21

 

                  23   t e p => t e n & ~x^t=0

                        Split, 22

 

                  24   t e n & ~x^t=0 => t e p

                        Split, 22

 

                  25   t e n & ~x^t=0

                        Detach, 23, 20

 

                  26   t e n

                        Split, 25

 

         As Required:

 

            27   ALL(b):[b e p => b e n]

                  4 Conclusion, 20

 

            28   Set(p) & ALL(b):[b e p => b e n]

                  Join, 17, 27

 

        

         Sufficient: For ALL(b):[b e n => b e p]

 

            29   0 e p & ALL(b):[b e p => b+1 e p]

             => ALL(b):[b e n => b e p]

                  Detach, 19, 28

 

        

         BASE CASE

         *********

        

         Apply definiton of p

 

            30   0 e p <=> 0 e n & ~x^0=0

                  U Spec, 18

 

            31   [0 e p => 0 e n & ~x^0=0] & [0 e n & ~x^0=0 => 0 e p]

                  Iff-And, 30

 

            32   0 e p => 0 e n & ~x^0=0

                  Split, 31

 

         Sufficient: For 0 e p

 

            33   0 e n & ~x^0=0 => 0 e p

                  Split, 31

 

         Apply axiom

 

            34   x e n => [~x=0 => x^0=1]

                  U Spec, 11

 

            35   ~x=0 => x^0=1

                  Detach, 34, 13

 

            36   x^0=1

                  Detach, 35, 14

 

            37   ~x^0=0

                  Substitute, 36, 4

 

            38   0 e n & ~x^0=0

                  Join, 2, 37

 

        

         As Required:

 

            39   0 e p

                  Detach, 33, 38

 

            

             INDUCTIVE STEP

             **************

            

             Prove: ALL(b):[b e p => b+1 e p]

            

             Suppose...

 

                  40   t e p

                        Premise

 

             Apply definition of p

 

                  41   t e p <=> t e n & ~x^t=0

                        U Spec, 18

 

                  42   [t e p => t e n & ~x^t=0] & [t e n & ~x^t=0 => t e p]

                        Iff-And, 41

 

                  43   t e p => t e n & ~x^t=0

                        Split, 42

 

                  44   t e n & ~x^t=0 => t e p

                        Split, 42

 

                  45   t e n & ~x^t=0

                        Detach, 43, 40

 

                  46   t e n

                        Split, 45

 

                  47   ~x^t=0

                        Split, 45

 

             Apply axiom

 

                  48   ALL(b):[t e n & b e n => t+b e n]

                        U Spec, 5

 

                  49   t e n & 1 e n => t+1 e n

                        U Spec, 48

 

                  50   t e n & 1 e n

                        Join, 46, 3

 

                  51   t+1 e n

                        Detach, 49, 50

 

             Apply definition of p

 

                  52   t+1 e p <=> t+1 e n & ~x^(t+1)=0

                        U Spec, 18, 51

 

                  53   [t+1 e p => t+1 e n & ~x^(t+1)=0]

                 & [t+1 e n & ~x^(t+1)=0 => t+1 e p]

                        Iff-And, 52

 

                  54   t+1 e p => t+1 e n & ~x^(t+1)=0

                        Split, 53

 

            

             Sufficient: For t+1 e p

 

                  55   t+1 e n & ~x^(t+1)=0 => t+1 e p

                        Split, 53

 

             Apply axiom

 

                  56   ALL(b):[t e n & b e n => t+b e n]

                        U Spec, 5

 

                  57   t e n & 1 e n => t+1 e n

                        U Spec, 56

 

                  58   t e n & 1 e n

                        Join, 46, 3

 

                  59   t+1 e n

                        Detach, 57, 58

 

             Apply axiom

 

                  60   ALL(b):[x e n & b e n

                 => [~[x=0 & b=0] => x^(b+1)=x^b*x]]

                        U Spec, 12

 

                  61   x e n & t e n

                 => [~[x=0 & t=0] => x^(t+1)=x^t*x]

                        U Spec, 60

 

                  62   x e n & t e n

                        Join, 13, 46

 

                  63   ~[x=0 & t=0] => x^(t+1)=x^t*x

                        Detach, 61, 62

 

                

                 Prove: ~[x=0 & t=0]

                

                 Suppose to the contrary...

 

                        64   x=0 & t=0

                              Premise

 

                        65   x=0

                              Split, 64

 

                        66   t=0

                              Split, 64

 

                        67   x=0 & ~x=0

                              Join, 65, 14

 

             As Required:

 

                  68   ~[x=0 & t=0]

                        4 Conclusion, 64

 

                  69   x^(t+1)=x^t*x

                        Detach, 63, 68

 

             Apply axiom

 

                  70   ALL(b):[x e n & b e n => [~[x=0 & b=0] => x^b e n]]

                        U Spec, 9

 

                  71   x e n & t e n => [~[x=0 & t=0] => x^t e n]

                        U Spec, 70

 

                  72   x e n & t e n

                        Join, 13, 46

 

                  73   ~[x=0 & t=0] => x^t e n

                        Detach, 71, 72

 

                

                 Prove: ~[x=0 & t=0]

                

                 Suppose...

 

                        74   x=0 & t=0

                              Premise

 

                        75   x=0

                              Split, 74

 

                        76   t=0

                              Split, 74

 

                        77   x=0 & ~x=0

                              Join, 75, 14

 

             As Required:

 

                  78   ~[x=0 & t=0]

                        4 Conclusion, 74

 

                  79   x^t e n

                        Detach, 73, 78

 

             Apply axiom

 

                  80   ALL(b):[x^t e n & b e n => [~x^t=0 & ~b=0 => ~x^t*b=0]]

                        U Spec, 7, 79

 

                  81   x^t e n & x e n => [~x^t=0 & ~x=0 => ~x^t*x=0]

                        U Spec, 80

 

                  82   x^t e n & x e n

                        Join, 79, 13

 

                  83   ~x^t=0 & ~x=0 => ~x^t*x=0

                        Detach, 81, 82

 

                  84   ~x^t=0 & ~x=0

                        Join, 47, 14

 

                  85   ~x^t*x=0

                        Detach, 83, 84

 

                  86   ~x^(t+1)=0

                        Substitute, 69, 85

 

                  87   t+1 e n & ~x^(t+1)=0

                        Join, 59, 86

 

                  88   t+1 e p

                        Detach, 55, 87

 

         As Required:

 

            89   ALL(b):[b e p => b+1 e p]

                  4 Conclusion, 40

 

         Joining results...

 

            90   0 e p & ALL(b):[b e p => b+1 e p]

                  Join, 39, 89

 

         As Required:

 

            91   ALL(b):[b e n => b e p]

                  Detach, 29, 90

 

            

             Prove: ALL(b):[b e n => ~x^b=0]

            

             Suppose...

 

                  92   y e n

                        Premise

 

                  93   y e n => y e p

                        U Spec, 91

 

                  94   y e p

                        Detach, 93, 92

 

             Apply definition of p

 

                  95   y e p <=> y e n & ~x^y=0

                        U Spec, 18

 

                  96   [y e p => y e n & ~x^y=0] & [y e n & ~x^y=0 => y e p]

                        Iff-And, 95

 

                  97   y e p => y e n & ~x^y=0

                        Split, 96

 

                  98   y e n & ~x^y=0 => y e p

                        Split, 96

 

                  99   y e n & ~x^y=0

                        Detach, 97, 94

 

                  100  y e n

                        Split, 99

 

                  101  ~x^y=0

                        Split, 99

 

         As Required:

 

            102  ALL(b):[b e n => ~x^b=0]

                  4 Conclusion, 92

 

    As Required:

 

      103  ~x=0 => ALL(b):[b e n => ~x^b=0]

            4 Conclusion, 14

 

As Required:

 

104  ALL(a):[a e n => [~a=0 => ALL(b):[b e n => ~a^b=0]]]

      4 Conclusion, 13

 

   

    Prove: ALL(a):ALL(b):[a e n & b e n => [~a=0 => ~a^b=0]]

   

    Suppose...

 

      105  x e n & y e n

            Premise

 

      106  x e n

            Split, 105

 

      107  y e n

            Split, 105

 

      108  x e n => [~x=0 => ALL(b):[b e n => ~x^b=0]]

            U Spec, 104

 

      109  ~x=0 => ALL(b):[b e n => ~x^b=0]

            Detach, 108, 106

 

        

         Prove: ~x=0 => ~x^y=0

        

         Suppose...

 

            110  ~x=0

                  Premise

 

            111  ALL(b):[b e n => ~x^b=0]

                  Detach, 109, 110

 

            112  y e n => ~x^y=0

                  U Spec, 111

 

            113  ~x^y=0

                  Detach, 112, 107

 

    As Required:

 

      114  ~x=0 => ~x^y=0

            4 Conclusion, 110

 

As Required:

 

115  ALL(a):ALL(b):[a e n & b e n => [~a=0 => ~a^b=0]]

      4 Conclusion, 105