THEOREM

*******

 

No power set of a set is a subset of the set.

 

ALL(a):ALL(pa):[Set(a) & Set(pa) & ALL(x):[x e pa <=> ALL(y):[y e x => y e a]] => ~ALL(x):[x e pa => x e a]]

 

 

This formal proof was written and machine-verified with the aid of the author's DC Proof 2.0 software available at http://www.dcproof.com

 

    

     PROOF

     *****

    

     Let sets a and pa be such that pa is the power set of a

 

      1     Set(a) & Set(pa) & ALL(x):[x e pa <=> ALL(y):[y e x => y e a]]

            Premise

 

     Splitting this premise...

 

      2     Set(a)

            Split, 1

 

      3     Set(pa)

            Split, 1

 

     pa is the power set of a

 

      4     ALL(x):[x e pa <=> ALL(y):[y e x => y e a]]

            Split, 1

 

         

          Prove: ~ALL(x):[x e pa => x e a]    (i.e. pa is NOT a susbset of a)

         

          Suppose to the contrary...

 

            5     ALL(x):[x e pa => x e a]

                  Premise

 

          Apply Subset Axiom

 

            6     EXIST(s):[Set(s) & ALL(x):[x e s <=> x e a & ~x e x]]

                  Subset, 2

 

          Let b be the subset of a such that...

 

            7     Set(b) & ALL(x):[x e b <=> x e a & ~x e x]

                  E Spec, 6

 

          Splitting...

 

            8     Set(b)

                  Split, 7

 

            9     ALL(x):[x e b <=> x e a & ~x e x]

                  Split, 7

 

          Prove: b e a

         

          Apply definition of pa

 

            10    b e pa <=> ALL(y):[y e b => y e a]

                  U Spec, 4

 

            11    [b e pa => ALL(y):[y e b => y e a]]

              & [ALL(y):[y e b => y e a] => b e pa]

                  Iff-And, 10

 

            12    b e pa => ALL(y):[y e b => y e a]

                  Split, 11

 

            13    ALL(y):[y e b => y e a] => b e pa

                  Split, 11

 

             

              Prove: ALL(x):[x e b => x e a]

             

              Suppose...

 

                  14    t e b

                        Premise

 

              Apply definition of b

 

                  15    t e b <=> t e a & ~t e t

                        U Spec, 9

 

                  16    [t e b => t e a & ~t e t] & [t e a & ~t e t => t e b]

                        Iff-And, 15

 

                  17    t e b => t e a & ~t e t

                        Split, 16

 

                  18    t e a & ~t e t => t e b

                        Split, 16

 

                  19    t e a & ~t e t

                        Detach, 17, 14

 

                  20    t e a

                        Split, 19

 

          As Required:

 

            21    ALL(x):[x e b => x e a]

                  4 Conclusion, 14

 

            22    b e pa

                  Detach, 13, 21

 

          Apply initial premise

 

            23    b e pa => b e a

                  U Spec, 5

 

          As Required:

 

            24    b e a

                  Detach, 23, 22

 

          Prove: b e b <=> ~b e b  (contradiction)

 

            25    b e b <=> b e a & ~b e b

                  U Spec, 9

 

            26    [b e b => b e a & ~b e b] & [b e a & ~b e b => b e b]

                  Iff-And, 25

 

            27    b e b => b e a & ~b e b

                  Split, 26

 

            28    b e a & ~b e b => b e b

                  Split, 26

 

                  29    b e b

                        Premise

 

                  30    b e a & ~b e b

                        Detach, 27, 29

 

                  31    b e a

                        Split, 30

 

                  32    ~b e b

                        Split, 30

 

            33    b e b => ~b e b

                  4 Conclusion, 29

 

                  34    ~b e b

                        Premise

 

                  35    b e a & ~b e b

                        Join, 24, 34

 

                  36    b e b

                        Detach, 28, 35

 

            37    ~b e b => b e b

                  4 Conclusion, 34

 

            38    [b e b => ~b e b] & [~b e b => b e b]

                  Join, 33, 37

 

          As Required:

 

            39    b e b <=> ~b e b

                  Iff-And, 38

 

     As Required:

 

      40    ~ALL(x):[x e pa => x e a]

            4 Conclusion, 5

 

 

As Required:

 

41    ALL(a):ALL(pa):[Set(a) & Set(pa) & ALL(x):[x e pa <=> ALL(y):[y e x => y e a]]

     => ~ALL(x):[x e pa => x e a]]

      4 Conclusion, 1