THEOREM

*******

 

Let x be an infinite set. There exists a subset n of x, function f: n --> n and x0 in n such that (n,f,x0) satisfies Peano's axioms (PA1-5).

 

Lines

-----

 

13-39    Define f: x --> x

40-42    Define x0

43-46    Construct subset n of x

47-57    PA1: x0 e n

59-84    PA2: f is closed on n

93-107   PA3: f is injective on n

108-113  PA4: There is no pre-image of x0 in n under f

114-141  PA5: Induction holds on n using f as the successor function and x0 as the "first" element

142-151  Generalizing

 

 

This proof was written and machine-verified with the aid of the author's DC Proof 2.0 software

available at http://www.dcproof.com

 

 

DEFINITIONS

***********

 

Define: Infinite

 

1     ALL(a):[Infinite(a) <=> EXIST(f):[ALL(b):[b e a => f(b) e a] & [Injective(f,a,a)
     & ~Surjective(f,a,a)]]]

      Axiom

 

 

Define: Injective

 

2     ALL(f):ALL(a):ALL(b):[Injective(f,a,b) <=> ALL(c):ALL(d):[c e a & d e a => [f(c)=f(d)
     => c=d]]]

      Axiom

 

 

Define: Surjective

 

3     ALL(f):ALL(a):ALL(b):[Surjective(f,a,b) <=> ALL(c):[c e b => EXIST(d):[d e a & f(d)=c]]]

      Axiom

 

    

     PROOF

     *****

    

     Suppose x is an infinite set

 

      4     Set(x) & Infinite(x)

            Premise

 

      5     Set(x)

            Split, 4

 

      6     Infinite(x)

            Split, 4

 

     Apply definition of Infinite

 

      7     Infinite(x) <=> EXIST(f):[ALL(b):[b e x => f(b) e x] & [Injective(f,x,x)
          & ~Surjective(f,
x,x)]]

            U Spec, 1

 

      8     [Infinite(x) => EXIST(f):[ALL(b):[b e x => f(b) e x] & [Injective(f,x,x)
          & ~Surjective(f,
x,x)]]]

          & [EXIST(f):[ALL(b):[b e x => f(b) e x] & [Injective(f,x,x) & ~Surjective(f,x,x)]]
          => Infinite(
x)]

            Iff-And, 7

 

      9     Infinite(x) => EXIST(f):[ALL(b):[b e x => f(b) e x] & [Injective(f,x,x)
          & ~Surjective(f,
x,x)]]

            Split, 8

 

      10    EXIST(f):[ALL(b):[b e x => f(b) e x] & [Injective(f,x,x) & ~Surjective(f,x,x)]]

          => Infinite(x)

            Split, 8

 

      11    EXIST(f):[ALL(b):[b e x => f(b) e x] & [Injective(f,x,x) & ~Surjective(f,x,x)]]

            Detach, 9, 6

 

      12    ALL(b):[b e x => f(b) e x] & [Injective(f,x,x) & ~Surjective(f,x,x)]

            E Spec, 11

 

      13    ALL(b):[b e x => f(b) e x]

            Split, 12

 

      14    Injective(f,x,x) & ~Surjective(f,x,x)

            Split, 12

 

      15    Injective(f,x,x)

            Split, 14

 

      16    ~Surjective(f,x,x)

            Split, 14

 

     Apply definition of Injective

 

      17    ALL(a):ALL(b):[Injective(f,a,b) <=> ALL(c):ALL(d):[c e a & d e a => [f(c)=f(d) => c=d]]]

            U Spec, 2

 

      18    ALL(b):[Injective(f,x,b) <=> ALL(c):ALL(d):[c e x & d e x => [f(c)=f(d) => c=d]]]

            U Spec, 17

 

      19    Injective(f,x,x) <=> ALL(c):ALL(d):[c e x & d e x => [f(c)=f(d) => c=d]]

            U Spec, 18

 

      20    [Injective(f,x,x) => ALL(c):ALL(d):[c e x & d e x => [f(c)=f(d) => c=d]]]

          & [ALL(c):ALL(d):[c e x & d e x => [f(c)=f(d) => c=d]] => Injective(f,x,x)]

            Iff-And, 19

 

      21    Injective(f,x,x) => ALL(c):ALL(d):[c e x & d e x => [f(c)=f(d) => c=d]]

            Split, 20

 

      22    ALL(c):ALL(d):[c e x & d e x => [f(c)=f(d) => c=d]] => Injective(f,x,x)

            Split, 20

 

     f is injective

 

      23    ALL(c):ALL(d):[c e x & d e x => [f(c)=f(d) => c=d]]

            Detach, 21, 15

 

     Apply definition of Surjective

 

      24    ALL(a):ALL(b):[Surjective(f,a,b) <=> ALL(c):[c e b => EXIST(d):[d e a & f(d)=c]]]

            U Spec, 3

 

      25    ALL(b):[Surjective(f,x,b) <=> ALL(c):[c e b => EXIST(d):[d e x & f(d)=c]]]

            U Spec, 24

 

      26    Surjective(f,x,x) <=> ALL(c):[c e x => EXIST(d):[d e x & f(d)=c]]

            U Spec, 25

 

      27    [Surjective(f,x,x) => ALL(c):[c e x => EXIST(d):[d e x & f(d)=c]]]

          & [ALL(c):[c e x => EXIST(d):[d e x & f(d)=c]] => Surjective(f,x,x)]

            Iff-And, 26

 

      28    Surjective(f,x,x) => ALL(c):[c e x => EXIST(d):[d e x & f(d)=c]]

            Split, 27

 

      29    ALL(c):[c e x => EXIST(d):[d e x & f(d)=c]] => Surjective(f,x,x)

            Split, 27

 

     Necessary for ~Surjective

 

      30    ~Surjective(f,x,x) => ~ALL(c):[c e x => EXIST(d):[d e x & f(d)=c]]

            Contra, 29

 

      31    ~ALL(c):[c e x => EXIST(d):[d e x & f(d)=c]]

            Detach, 30, 16

 

      32    ~~EXIST(c):~[c e x => EXIST(d):[d e x & f(d)=c]]

            Quant, 31

 

      33    EXIST(c):~[c e x => EXIST(d):[d e x & f(d)=c]]

            Rem DNeg, 32

 

      34    EXIST(c):~~[c e x & ~EXIST(d):[d e x & f(d)=c]]

            Imply-And, 33

 

      35    EXIST(c):[c e x & ~EXIST(d):[d e x & f(d)=c]]

            Rem DNeg, 34

 

      36    EXIST(c):[c e x & ~~ALL(d):~[d e x & f(d)=c]]

            Quant, 35

 

      37    EXIST(c):[c e x & ALL(d):~[d e x & f(d)=c]]

            Rem DNeg, 36

 

      38    EXIST(c):[c e x & ALL(d):~~[d e x => ~f(d)=c]]

            Imply-And, 37

 

      39    EXIST(c):[c e x & ALL(d):[d e x => ~f(d)=c]]

            Rem DNeg, 38

 

      40    x0 e x & ALL(d):[d e x => ~f(d)=x0]

            E Spec, 39

 

    

     Define: x0

 

      41    x0 e x

            Split, 40

 

      42    ALL(d):[d e x => ~f(d)=x0]

            Split, 40

 

     Construct subset n of x

    

     Apply Subset Axiom

 

      43    EXIST(sub):[Set(sub) & ALL(a):[a e sub <=> a e x & ALL(b):[Set(b)

          & ALL(c):[c e b => c e x]

          & x0 e b

          & ALL(c):[c e b => f(c) e b]

          => a e b]]]

            Subset, 5

 

      44    Set(n) & ALL(a):[a e n <=> a e x & ALL(b):[Set(b)

          & ALL(c):[c e b => c e x]

          & x0 e b

          & ALL(c):[c e b => f(c) e b]

          => a e b]]

            E Spec, 43

 

    

     Define: n

 

      45    Set(n)

            Split, 44

 

      46    ALL(a):[a e n <=> a e x & ALL(b):[Set(b)

          & ALL(c):[c e b => c e x]

          & x0 e b

          & ALL(c):[c e b => f(c) e b]

          => a e b]]

            Split, 44

 

     Prove: x0 e n  (PA1)

    

     Apply definition of n

 

      47    x0 e n <=> x0 e x & ALL(b):[Set(b)

          & ALL(c):[c e b => c e x]

          & x0 e b

          & ALL(c):[c e b => f(c) e b]

          => x0 e b]

            U Spec, 46

 

      48    [x0 e n => x0 e x & ALL(b):[Set(b)

          & ALL(c):[c e b => c e x]

          & x0 e b

          & ALL(c):[c e b => f(c) e b]

          => x0 e b]]

          & [x0 e x & ALL(b):[Set(b)

          & ALL(c):[c e b => c e x]

          & x0 e b

          & ALL(c):[c e b => f(c) e b]

          => x0 e b] => x0 e n]

            Iff-And, 47

 

      49    x0 e n => x0 e x & ALL(b):[Set(b)

          & ALL(c):[c e b => c e x]

          & x0 e b

          & ALL(c):[c e b => f(c) e b]

          => x0 e b]

            Split, 48

 

     Sufficient: For x0 in n

 

      50    x0 e x & ALL(b):[Set(b)

          & ALL(c):[c e b => c e x]

          & x0 e b

          & ALL(c):[c e b => f(c) e b]

          => x0 e b] => x0 e n

            Split, 48

 

            51    Set(q)

              & ALL(c):[c e q => c e x]

              & x0 e q

              & ALL(c):[c e q => f(c) e q]

                  Premise

 

            52    Set(q)

                  Split, 51

 

            53    ALL(c):[c e q => c e x]

                  Split, 51

 

            54    x0 e q

                  Split, 51

 

      55    ALL(b):[Set(b)

          & ALL(c):[c e b => c e x]

          & x0 e b

          & ALL(c):[c e b => f(c) e b]

          => x0 e b]

            4 Conclusion, 51

 

      56    x0 e x

          & ALL(b):[Set(b)

          & ALL(c):[c e b => c e x]

          & x0 e b

          & ALL(c):[c e b => f(c) e b]

          => x0 e b]

            Join, 41, 55

 

     PA1

     ***

 

      57    x0 e n

            Detach, 50, 56

 

         

          Prove: ALL(a):[a e n => f(a) e n]  (PA2)

         

          Suppose...

 

            58    t e n

                  Premise

 

          Apply definition of n

 

            59    t e n <=> t e x & ALL(b):[Set(b)

              & ALL(c):[c e b => c e x]

              & x0 e b

              & ALL(c):[c e b => f(c) e b]

              => t e b]

                  U Spec, 46

 

            60    [t e n => t e x & ALL(b):[Set(b)

              & ALL(c):[c e b => c e x]

              & x0 e b

              & ALL(c):[c e b => f(c) e b]

              => t e b]]

              & [t e x & ALL(b):[Set(b)

              & ALL(c):[c e b => c e x]

              & x0 e b

              & ALL(c):[c e b => f(c) e b]

              => t e b] => t e n]

                  Iff-And, 59

 

            61    t e n => t e x & ALL(b):[Set(b)

              & ALL(c):[c e b => c e x]

              & x0 e b

              & ALL(c):[c e b => f(c) e b]

              => t e b]

                  Split, 60

 

            62    t e x & ALL(b):[Set(b)

              & ALL(c):[c e b => c e x]

              & x0 e b

              & ALL(c):[c e b => f(c) e b]

              => t e b] => t e n

                  Split, 60

 

            63    t e x & ALL(b):[Set(b)

              & ALL(c):[c e b => c e x]

              & x0 e b

              & ALL(c):[c e b => f(c) e b]

              => t e b]

                  Detach, 61, 58

 

            64    t e x

                  Split, 63

 

            65    ALL(b):[Set(b)

              & ALL(c):[c e b => c e x]

              & x0 e b

              & ALL(c):[c e b => f(c) e b]

              => t e b]

                  Split, 63

 

          Apply definition n

 

            66    f(t) e n <=> f(t) e x & ALL(b):[Set(b)

              & ALL(c):[c e b => c e x]

              & x0 e b

              & ALL(c):[c e b => f(c) e b]

              => f(t) e b]

                  U Spec, 46

 

            67    [f(t) e n => f(t) e x & ALL(b):[Set(b)

              & ALL(c):[c e b => c e x]

              & x0 e b

              & ALL(c):[c e b => f(c) e b]

              => f(t) e b]]

              & [f(t) e x & ALL(b):[Set(b)

              & ALL(c):[c e b => c e x]

              & x0 e b

              & ALL(c):[c e b => f(c) e b]

              => f(t) e b] => f(t) e n]

                  Iff-And, 66

 

            68    f(t) e n => f(t) e x & ALL(b):[Set(b)

              & ALL(c):[c e b => c e x]

              & x0 e b

              & ALL(c):[c e b => f(c) e b]

              => f(t) e b]

                  Split, 67

 

          Sufficient: For f(t) e n

 

            69    f(t) e x & ALL(b):[Set(b)

              & ALL(c):[c e b => c e x]

              & x0 e b

              & ALL(c):[c e b => f(c) e b]

              => f(t) e b] => f(t) e n

                  Split, 67

 

          Apply previous result

 

            70    t e x => f(t) e x

                  U Spec, 13

 

            71    f(t) e x

                  Detach, 70, 64

 

             

              Prove: ALL(b):[Set(b)

                     & ALL(c):[c e b => c e x]

                     & x0 e b

                     & ALL(c):[c e b => f(c) e b]

                     => f(t) e b]

             

              Suppose...

 

                  72    Set(q)

                   & ALL(c):[c e q => c e x]

                   & x0 e q

                   & ALL(c):[c e q => f(c) e q]

                        Premise

 

                  73    Set(q)

                        Split, 72

 

                  74    ALL(c):[c e q => c e x]

                        Split, 72

 

                  75    x0 e q

                        Split, 72

 

                  76    ALL(c):[c e q => f(c) e q]

                        Split, 72

 

                  77    t e q => f(t) e q

                        U Spec, 76

 

              Apply previous result

 

                  78    Set(q)

                   & ALL(c):[c e q => c e x]

                   & x0 e q

                   & ALL(c):[c e q => f(c) e q]

                   => t e q

                        U Spec, 65

 

                  79    t e q

                        Detach, 78, 72

 

                  80    f(t) e q

                        Detach, 77, 79

 

          As Required:

 

            81    ALL(b):[Set(b)

              & ALL(c):[c e b => c e x]

              & x0 e b

              & ALL(c):[c e b => f(c) e b]

              => f(t) e b]

                  4 Conclusion, 72

 

            82    f(t) e x

              & ALL(b):[Set(b)

              & ALL(c):[c e b => c e x]

              & x0 e b

              & ALL(c):[c e b => f(c) e b]

              => f(t) e b]

                  Join, 71, 81

 

            83    f(t) e n

                  Detach, 69, 82

 

     PA2  f is closed on n

     ***

 

      84    ALL(a):[a e n => f(a) e n]

            4 Conclusion, 58

 

         

          Prove: n is a subset of x

         

          Suppose...

 

            85    t e n

                  Premise

 

            86    t e n <=> t e x & ALL(b):[Set(b)

              & ALL(c):[c e b => c e x]

              & x0 e b

              & ALL(c):[c e b => f(c) e b]

              => t e b]

                  U Spec, 46

 

            87    [t e n => t e x & ALL(b):[Set(b)

              & ALL(c):[c e b => c e x]

              & x0 e b

              & ALL(c):[c e b => f(c) e b]

              => t e b]]

              & [t e x & ALL(b):[Set(b)

              & ALL(c):[c e b => c e x]

              & x0 e b

              & ALL(c):[c e b => f(c) e b]

              => t e b] => t e n]

                  Iff-And, 86

 

            88    t e n => t e x & ALL(b):[Set(b)

              & ALL(c):[c e b => c e x]

              & x0 e b

              & ALL(c):[c e b => f(c) e b]

              => t e b]

                  Split, 87

 

            89    t e x & ALL(b):[Set(b)

              & ALL(c):[c e b => c e x]

              & x0 e b

              & ALL(c):[c e b => f(c) e b]

              => t e b] => t e n

                  Split, 87

 

            90    t e x & ALL(b):[Set(b)

              & ALL(c):[c e b => c e x]

              & x0 e b

              & ALL(c):[c e b => f(c) e b]

              => t e b]

                  Detach, 88, 85

 

            91    t e x

                  Split, 90

 

     As Required:

    

     n is a subset of x

 

      92    ALL(a):[a e n => a e x]

            4 Conclusion, 85

 

         

          Prove: ALL(a):ALL(b):[a e n & b e n => [f(a)=f(b) => a=b]]  (PA3)

         

          Suppose...

 

            93    t e n & u e n

                  Premise

 

            94    t e n

                  Split, 93

 

            95    u e n

                  Split, 93

 

             

              Prove: f(t)=f(u) => t=u

             

              Suppose...

 

                  96    f(t)=f(u)

                        Premise

 

              Apply previous result

 

                  97    ALL(d):[t e x & d e x => [f(t)=f(d) => t=d]]

                        U Spec, 23

 

                  98    t e x & u e x => [f(t)=f(u) => t=u]

                        U Spec, 97

 

                  99    t e n => t e x

                        U Spec, 92

 

                  100  t e x

                        Detach, 99, 94

 

                  101  u e n => u e x

                        U Spec, 92

 

                  102  u e x

                        Detach, 101, 95

 

                  103  t e x & u e x

                        Join, 100, 102

 

                  104  f(t)=f(u) => t=u

                        Detach, 98, 103

 

                  105  t=u

                        Detach, 104, 96

 

          As Required:

 

            106  f(t)=f(u) => t=u

                  4 Conclusion, 96

 

     PA3  f is injective on n

     ***

 

      107  ALL(a):ALL(b):[a e n & b e n => [f(a)=f(b) => a=b]]

            4 Conclusion, 93

 

         

          Prove: ALL(a):[a e n => ~f(a)=x0]  (PA4)

         

          Suppose...

 

            108  t e n

                  Premise

 

            109  t e x => ~f(t)=x0

                  U Spec, 42

 

            110  t e n => t e x

                  U Spec, 92

 

            111  t e x

                  Detach, 110, 108

 

            112  ~f(t)=x0

                  Detach, 109, 111

 

     PA4  x0 has no pre-image in n under f

     ***

 

      113  ALL(a):[a e n => ~f(a)=x0]

            4 Conclusion, 108

 

         

          Prove: ALL(a):[Set(a) & ALL(b):[b e a => b e n]   (PA5)

                 => [x0 e a & ALL(b):[b e a => f(b) e a]

                 => ALL(b):[b e n => b e a]]]

         

          Suppose...

 

            114  Set(p) & ALL(b):[b e p => b e n]

                  Premise

 

            115  Set(p)

                  Split, 114

 

            116  ALL(b):[b e p => b e n]

                  Split, 114

 

             

              Prove: x0 e p & ALL(b):[b e p => f(b) e p]

                     => ALL(b):[b e n => b e p]

             

              Suppose...

 

                  117  x0 e p & ALL(b):[b e p => f(b) e p]

                        Premise

 

                  118  x0 e p

                        Split, 117

 

                  119  ALL(b):[b e p => f(b) e p]

                        Split, 117

 

                  

                   Prove: ALL(b):[b e n => b e p]

                  

                   Suppose...

 

                        120  t e n

                              Premise

 

                   Apply definition of n

 

                        121  t e n <=> t e x & ALL(b):[Set(b)

                        & ALL(c):[c e b => c e x]

                        & x0 e b

                        & ALL(c):[c e b => f(c) e b]

                        => t e b]

                              U Spec, 46

 

                        122  [t e n => t e x & ALL(b):[Set(b)

                        & ALL(c):[c e b => c e x]

                        & x0 e b

                        & ALL(c):[c e b => f(c) e b]

                        => t e b]]

                        & [t e x & ALL(b):[Set(b)

                        & ALL(c):[c e b => c e x]

                        & x0 e b

                        & ALL(c):[c e b => f(c) e b]

                        => t e b] => t e n]

                              Iff-And, 121

 

                        123  t e n => t e x & ALL(b):[Set(b)

                        & ALL(c):[c e b => c e x]

                        & x0 e b

                        & ALL(c):[c e b => f(c) e b]

                        => t e b]

                              Split, 122

 

                        124  t e x & ALL(b):[Set(b)

                        & ALL(c):[c e b => c e x]

                        & x0 e b

                        & ALL(c):[c e b => f(c) e b]

                        => t e b] => t e n

                              Split, 122

 

                        125  t e x & ALL(b):[Set(b)

                        & ALL(c):[c e b => c e x]

                        & x0 e b

                        & ALL(c):[c e b => f(c) e b]

                        => t e b]

                              Detach, 123, 120

 

                        126  t e x

                              Split, 125

 

                        127  ALL(b):[Set(b)

                        & ALL(c):[c e b => c e x]

                        & x0 e b

                        & ALL(c):[c e b => f(c) e b]

                        => t e b]

                              Split, 125

 

                   Sufficient: For t e p

 

                        128  Set(p)

                        & ALL(c):[c e p => c e x]

                        & x0 e p

                        & ALL(c):[c e p => f(c) e p]

                        => t e p

                              U Spec, 127

 

                       

                        Prove: ALL(c):[c e p => c e x]

                       

                        Suppose...

 

                              129  u e p

                                    Premise

 

                              130  u e p => u e n

                                    U Spec, 116

 

                              131  u e n

                                    Detach, 130, 129

 

                              132  u e n => u e x

                                    U Spec, 92

 

                              133  u e x

                                    Detach, 132, 131

 

                   As Required:

 

                        134  ALL(c):[c e p => c e x]

                              4 Conclusion, 129

 

                        135  Set(p) & ALL(c):[c e p => c e x]

                              Join, 115, 134

 

                        136  Set(p) & ALL(c):[c e p => c e x] & x0 e p

                              Join, 135, 118

 

                        137  Set(p) & ALL(c):[c e p => c e x] & x0 e p

                        & ALL(b):[b e p => f(b) e p]

                              Join, 136, 119

 

                        138  t e p

                              Detach, 128, 137

 

              As Required:

 

                  139  ALL(b):[b e n => b e p]

                        4 Conclusion, 120

 

          As Required:

 

            140  x0 e p & ALL(b):[b e p => f(b) e p]

              => ALL(b):[b e n => b e p]

                  4 Conclusion, 117

 

     PA5  Induction holds on n with successor function f and "first" element x0

     ***

 

      141  ALL(a):[Set(a) & ALL(b):[b e a => b e n]

          => [x0 e a & ALL(b):[b e a => f(b) e a]

          => ALL(b):[b e n => b e a]]]

            4 Conclusion, 114

 

     Joining previous results...

 

      142  Set(n) & ALL(a):[a e n => a e x]

            Join, 45, 92

 

      143  Set(n) & ALL(a):[a e n => a e x] & x0 e n

            Join, 142, 57

 

      144  Set(n) & ALL(a):[a e n => a e x] & x0 e n

          & ALL(a):[a e n => f(a) e n]

            Join, 143, 84

 

      145  Set(n) & ALL(a):[a e n => a e x] & x0 e n

          & ALL(a):[a e n => f(a) e n]

          & ALL(a):ALL(b):[a e n & b e n => [f(a)=f(b) => a=b]]

            Join, 144, 107

 

      146  Set(n) & ALL(a):[a e n => a e x] & x0 e n

          & ALL(a):[a e n => f(a) e n]

          & ALL(a):ALL(b):[a e n & b e n => [f(a)=f(b) => a=b]]

          & ALL(a):[a e n => ~f(a)=x0]

            Join, 145, 113

 

      147  Set(n) & ALL(a):[a e n => a e x] & x0 e n

          & ALL(a):[a e n => f(a) e n]

          & ALL(a):ALL(b):[a e n & b e n => [f(a)=f(b) => a=b]]

          & ALL(a):[a e n => ~f(a)=x0]

          & ALL(a):[Set(a) & ALL(b):[b e a => b e n]

          => [x0 e a & ALL(b):[b e a => f(b) e a]

          => ALL(b):[b e n => b e a]]]

            Join, 146, 141

 

      148  EXIST(x0):[Set(n) & ALL(a):[a e n => a e x] & x0 e n

          & ALL(a):[a e n => f(a) e n]

          & ALL(a):ALL(b):[a e n & b e n => [f(a)=f(b) => a=b]]

          & ALL(a):[a e n => ~f(a)=x0]

          & ALL(a):[Set(a) & ALL(b):[b e a => b e n]

          => [x0 e a & ALL(b):[b e a => f(b) e a]

          => ALL(b):[b e n => b e a]]]]

            E Gen, 147

 

      149  EXIST(f):EXIST(x0):[Set(n) & ALL(a):[a e n => a e x] & x0 e n

          & ALL(a):[a e n => f(a) e n]

          & ALL(a):ALL(b):[a e n & b e n => [f(a)=f(b) => a=b]]

          & ALL(a):[a e n => ~f(a)=x0]

          & ALL(a):[Set(a) & ALL(b):[b e a => b e n]

          => [x0 e a & ALL(b):[b e a => f(b) e a]

          => ALL(b):[b e n => b e a]]]]

            E Gen, 148

 

      150  EXIST(n):EXIST(f):EXIST(x0):[Set(n) & ALL(a):[a e n => a e x] & x0 e n

          & ALL(a):[a e n => f(a) e n]

          & ALL(a):ALL(b):[a e n & b e n => [f(a)=f(b) => a=b]]

          & ALL(a):[a e n => ~f(a)=x0]

          & ALL(a):[Set(a) & ALL(b):[b e a => b e n]

          => [x0 e a & ALL(b):[b e a => f(b) e a]

          => ALL(b):[b e n => b e a]]]]

            E Gen, 149

 

 

As Required:

 

151  ALL(x):[Set(x) & Infinite(x)

     => EXIST(n):EXIST(f):EXIST(x0):[Set(n) & ALL(a):[a e n => a e x] & x0 e n

     & ALL(a):[a e n => f(a) e n]

     & ALL(a):ALL(b):[a e n & b e n => [f(a)=f(b) => a=b]]

     & ALL(a):[a e n => ~f(a)=x0]

     & ALL(a):[Set(a) & ALL(b):[b e a => b e n]

     => [x0 e a & ALL(b):[b e a => f(b) e a]

     => ALL(b):[b e n => b e a]]]]]

      4 Conclusion, 4