Some Simple Results from the Ordered Field Axioms

Introduction:

From the axioms for an ordered field (f,+,0,*,1), we obtain the following results:

1. _0=0

2. ALL(a):[a  f => [0<a <=> a  pos]]

3. ALL(a):[a  f => [a<0 <=> _a  pos]]

4. ALL(a):[a  f => _(_a)=a]

5. ALL(a):[a  f & 0<a => _a<0]

6. ALL(a):[a  f & a<0 => 0<_a]

Where:
pos = the set of positive elements of f
_x  = the additive inverse of x


The Field Axioms:

1	Set(f)
	& ALL(a):ALL(b):[a  f & b  f => a+b  f]
	& ALL(a):ALL(b):ALL(c):[a  f & b  f & c  f => a+b+c=a+(b+c)]
	& ALL(a):ALL(b):[a  f & b  f => a+b=b+a]
	& 0  f
	& ALL(a):[a  f => a+0=a]
	& ALL(a):[a  f => _a  f]
	& ALL(a):[a  f => a+_a=0]
	& ALL(a):ALL(b):[a  f & b  f => a*b  f]
	& ALL(a):ALL(b):ALL(c):[a  f & b  f & c  f => a*b*c=a*(b*c)]
	& ALL(a):ALL(b):[a  f & b  f => a*b=b*a]
	& ALL(a):ALL(b):ALL(c):[a  f & b  f & c  f => a*(b+c)=a*b+a*c]
	& 1  f
	& ~0=1
	& ALL(a):[a  f => a*1=a]
	& ALL(a):[a  f & ~a=0 => 1/a  f]
	& ALL(a):[a  f => a*(1/a)=1]
	Premise

Splitting out individual axioms...

f is a set

2	Set(f)
	Split, 1

Define: + operator on f

3	ALL(a):ALL(b):[a  f & b  f => a+b  f]
	Split, 1

+ is associative

4	ALL(a):ALL(b):ALL(c):[a  f & b  f & c  f => a+b+c=a+(b+c)]
	Split, 1

+ is commutative

5	ALL(a):ALL(b):[a  f & b  f => a+b=b+a]
	Split, 1

Define: 0

6	0  f
	Split, 1

7	ALL(a):[a  f => a+0=a]
	Split, 1

Define: _ operator on f

8	ALL(a):[a  f => _a  f]
	Split, 1

9	ALL(a):[a  f => a+_a=0]
	Split, 1

Define: * operator on f

10	ALL(a):ALL(b):[a  f & b  f => a*b  f]
	Split, 1

* is associative

11	ALL(a):ALL(b):ALL(c):[a  f & b  f & c  f => a*b*c=a*(b*c)]
	Split, 1

* is commutative

12	ALL(a):ALL(b):[a  f & b  f => a*b=b*a]
	Split, 1

* is distributive over +

13	ALL(a):ALL(b):ALL(c):[a  f & b  f & c  f => a*(b+c)=a*b+a*c]
	Split, 1

Define: 1

14	1  f
	Split, 1

15	~0=1
	Split, 1

16	ALL(a):[a  f => a*1=a]
	Split, 1

Define: 1/ operator

17	ALL(a):[a  f & ~a=0 => 1/a  f]
	Split, 1

18	ALL(a):[a  f => a*(1/a)=1]
	Split, 1


The Order Axioms:

19	Set(pos)
	& ALL(a):[a  pos => a  f]
	& ALL(a):[a  f
	=> [a=0 | a  pos | _a  pos]
	& ~[a=0 & a  pos]
	& ~[a=0 & _a  pos]
	& ~[a  pos & _a  pos]]
	& ALL(a):ALL(b):[a  f & b  f & a  pos & b  pos => a+b  pos]
	& ALL(a):ALL(b):[a  f & b  f & a  pos & b  pos => a*b  pos]
	& ALL(a):ALL(b):[a  f & b  f => [a<b <=> b+_a  pos]]
	& ALL(a):ALL(b):[a  f & b  f => [a>b <=> b<a]]
	& ALL(a):ALL(b):[a  f & b  f => [a<=b <=> a<b | a=b]]
	& ALL(a):ALL(b):[a  f & b  f => [a>=b <=> a>b | a=b]]
	Premise

Splitting out individual axioms...

pos is the subset of positive elements in f

20	Set(pos)
	Split, 19

21	ALL(a):[a  pos => a  f]
	Split, 19

Trichotomy

22	ALL(a):[a  f
	=> [a=0 | a  pos | _a  pos]
	& ~[a=0 & a  pos]
	& ~[a=0 & _a  pos]
	& ~[a  pos & _a  pos]]
	Split, 19

Closure under +

23	ALL(a):ALL(b):[a  f & b  f & a  pos & b  pos => a+b  pos]
	Split, 19

Closure under *

24	ALL(a):ALL(b):[a  f & b  f & a  pos & b  pos => a*b  pos]
	Split, 19

Define: <

25	ALL(a):ALL(b):[a  f & b  f => [a<b <=> b+_a  pos]]
	Split, 19

Prove: _0=0

26	0  f => 0+_0=0
	U Spec, 9

27	0+_0=0
	Detach, 26, 6

28	ALL(b):[0  f & b  f => 0+b=b+0]
	U Spec, 5

29	0  f & _0  f => 0+_0=_0+0
	U Spec, 28

30	0  f => _0  f
	U Spec, 8

31	_0  f
	Detach, 30, 6

32	0  f & _0  f
	Join, 6, 31

33	0+_0=_0+0
	Detach, 29, 32

34	_0+0=0
	Substitute, 33, 27

35	_0  f => _0+0=_0
	U Spec, 7

36	_0+0=_0
	Detach, 35, 31

37	0  f => 0+_0=0
	U Spec, 9

38	0+_0=0
	Detach, 37, 6

39	ALL(b):[0  f & b  f => 0+b=b+0]
	U Spec, 5

40	0  f & _0  f => 0+_0=_0+0
	U Spec, 39

41	0  f => _0  f
	U Spec, 8

42	_0  f
	Detach, 41, 6

43	0  f & _0  f
	Join, 6, 42

44	0+_0=_0+0
	Detach, 40, 43

45	_0+0=0
	Substitute, 44, 38

46	_0  f => _0+0=_0
	U Spec, 7

47	_0+0=_0
	Detach, 46, 42

Theorem 1:

48	_0=0
	Substitute, 47, 45

	Prove: x  f => [0<x <=> x  pos]
	
	Suppose...

	49	x  f
		Premise

	50	ALL(b):[0  f & b  f => [0<b <=> b+_0  pos]]
		U Spec, 25

	51	0  f & x  f => [0<x <=> x+_0  pos]
		U Spec, 50

	52	0  f & x  f
		Join, 6, 49

	53	0<x <=> x+_0  pos
		Detach, 51, 52

	54	0<x <=> x+0  pos
		Substitute, 48, 53

	55	x  f => x+0=x
		U Spec, 7

	56	x+0=x
		Detach, 55, 49

	57	0<x <=> x  pos
		Substitute, 56, 54

As Required:

58	x  f => [0<x <=> x  pos]
	Conclusion, 49
Theorem 2:

59	ALL(a):[a  f => [0<a <=> a  pos]]
	U Gen, 58

	Prove: x  f => [x<0 <=> _x  pos]
	
	Suppose...

	60	x  f
		Premise

	61	ALL(b):[x  f & b  f => [x<b <=> b+_x  pos]]
		U Spec, 25

	62	x  f & 0  f => [x<0 <=> 0+_x  pos]
		U Spec, 61

	63	x  f & 0  f
		Join, 60, 6

	64	x<0 <=> 0+_x  pos
		Detach, 62, 63

	65	ALL(b):[0  f & b  f => 0+b=b+0]
		U Spec, 5

	66	0  f & _x  f => 0+_x=_x+0
		U Spec, 65

	67	x  f => _x  f
		U Spec, 8

	68	_x  f
		Detach, 67, 60

	69	0  f & _x  f
		Join, 6, 68

	70	0+_x=_x+0
		Detach, 66, 69

	71	x<0 <=> _x+0  pos
		Substitute, 70, 64

	72	_x  f => _x+0=_x
		U Spec, 7

	73	_x+0=_x
		Detach, 72, 68

	74	x<0 <=> _x  pos
		Substitute, 73, 71

As Required:

75	x  f => [x<0 <=> _x  pos]
	Conclusion, 60
Theorem 3:

76	ALL(a):[a  f => [a<0 <=> _a  pos]]
	U Gen, 75

	Prove: x  f => _(_x)=x
	
	Suppose...

	77	x  f
		Premise

	78	_x  f => _x+_(_x)=0
		U Spec, 9

	79	x  f => _x  f
		U Spec, 8

	80	_x  f
		Detach, 79, 77

	81	_x+_(_x)=0
		Detach, 78, 80

	82	x+0=x+0
		Reflex

	83	x+(_x+_(_x))=x+0
		Substitute, 81, 82

	84	x  f => x+0=x
		U Spec, 7

	85	x+0=x
		Detach, 84, 77

	86	x+(_x+_(_x))=x
		Substitute, 85, 83

	87	ALL(b):ALL(c):[x  f & b  f & c  f => x+b+c=x+(b+c)]
		U Spec, 4

	88	ALL(c):[x  f & _x  f & c  f => x+_x+c=x+(_x+c)]
		U Spec, 87

	89	x  f & _x  f & _(_x)  f => x+_x+_(_x)=x+(_x+_(_x))
		U Spec, 88

	90	_x  f => _(_x)  f
		U Spec, 8

	91	_(_x)  f
		Detach, 90, 80

	92	x  f & _x  f
		Join, 77, 80

	93	x  f & _x  f & _(_x)  f
		Join, 92, 91

	94	x+_x+_(_x)=x+(_x+_(_x))
		Detach, 89, 93

	95	x+_x+_(_x)=x
		Substitute, 94, 86

	96	x  f => x+_x=0
		U Spec, 9

	97	x+_x=0
		Detach, 96, 77

	98	0+_(_x)=x
		Substitute, 97, 95

	99	ALL(b):[0  f & b  f => 0+b=b+0]
		U Spec, 5

	100	0  f & _(_x)  f => 0+_(_x)=_(_x)+0
		U Spec, 99

	101	0  f & _(_x)  f
		Join, 6, 91

	102	0+_(_x)=_(_x)+0
		Detach, 100, 101

	103	_(_x)+0=x
		Substitute, 102, 98

	104	_(_x)  f => _(_x)+0=_(_x)
		U Spec, 7

	105	_(_x)+0=_(_x)
		Detach, 104, 91

	106	_(_x)=x
		Substitute, 105, 103

As Required:

107	x  f => _(_x)=x
	Conclusion, 77
Theorem 4:

108	ALL(a):[a  f => _(_a)=a]
	U Gen, 107

	Prove: x  f & 0<x => _x<0
	
	Suppose...

	109	x  f & 0<x
		Premise

	110	x  f
		Split, 109

	111	0<x
		Split, 109

	112	x  f => [0<x <=> x  pos]
		U Spec, 59

	113	0<x <=> x  pos
		Detach, 112, 110

	114	[0<x => x  pos] & [x  pos => 0<x]
		Iff-And, 113

	115	0<x => x  pos
		Split, 114

	116	x  pos => 0<x
		Split, 114

	117	x  pos
		Detach, 115, 111

	118	_x  f => [_x<0 <=> _(_x)  pos]
		U Spec, 76

	119	x  f => _x  f
		U Spec, 8

	120	_x  f
		Detach, 119, 110

	121	_x<0 <=> _(_x)  pos
		Detach, 118, 120

	122	[_x<0 => _(_x)  pos] & [_(_x)  pos => _x<0]
		Iff-And, 121

	123	_x<0 => _(_x)  pos
		Split, 122

	Sufficient:

	124	_(_x)  pos => _x<0
		Split, 122

	125	x  f => _(_x)=x
		U Spec, 108

	126	_(_x)=x
		Detach, 125, 110

	127	x  pos => _x<0
		Substitute, 126, 124

	128	_x<0
		Detach, 127, 117

As Required:

129	x  f & 0<x => _x<0
	Conclusion, 109
Theorem 5:

130	ALL(a):[a  f & 0<a => _a<0]
	U Gen, 129

	Prove: x  f & x<0 => 0<_x
	
	Suppose...

	131	x  f & x<0
		Premise

	132	x  f
		Split, 131

	133	x<0
		Split, 131

	134	x  f => [x<0 <=> _x  pos]
		U Spec, 76

	135	x<0 <=> _x  pos
		Detach, 134, 132

	136	[x<0 => _x  pos] & [_x  pos => x<0]
		Iff-And, 135

	137	x<0 => _x  pos
		Split, 136

	138	_x  pos => x<0
		Split, 136

	139	_x  pos
		Detach, 137, 133

	140	_x  f => [0<_x <=> _x  pos]
		U Spec, 59

	141	x  f => _x  f
		U Spec, 8

	142	_x  f
		Detach, 141, 132

	143	0<_x <=> _x  pos
		Detach, 140, 142

	144	[0<_x => _x  pos] & [_x  pos => 0<_x]
		Iff-And, 143

	145	0<_x => _x  pos
		Split, 144

	146	_x  pos => 0<_x
		Split, 144

	147	0<_x
		Detach, 146, 139

As Required:

148	x  f & x<0 => 0<_x
	Conclusion, 131
Theorem 6:

149	ALL(a):[a  f & a<0 => 0<_a]
	U Gen, 148