INTRODUCTION

************

 

I propose the following axioms for ultrafinist number theory.

 

Informally, we have n = {0, 1, 2, ... max}. Not ruled out is the possibility of max = 0 and n = {0}.

 

'next' is a partial function on n analogous to the Peano's successor function.

 

'(x,y) e next' means y is the successor of x, or x is the predecessor of y.

 

 

As a test, I prove by induction that no number is its own succesor, i.e. ALL(a):[a e n => ~(a,a) e next]

 

Interestingly, this proof makes reference to max.

 

 

(This formal proof was prepared with the aid of the author's DC Proof 2.0 software available free at http://www.dcproof.com )

 

 

THE AXIOMS

**********

 

n is a set

 

1     Set(n)

      Axiom

 

2     0 e n

      Axiom

 

3     max e n

      Axiom

 

next is a set of ordered pairs of elements of n

 

4     Set'(next)

      Axiom

 

5     ALL(a):ALL(b):[(a,b) e next => a e n & b e n]

      Axiom

 

0 has no predecessor

 

6     ALL(a):[a e n => ~(a,0) e next]

      Axiom

 

max has no successor

 

7     ALL(a):[a e n => ~(max,a) e next]

      Axiom

 

All numbers but max have a successor

 

8     ALL(a):[a e n => [~a=max => EXIST(b):[b e n & (a,b) e next]]]

      Axiom

 

If a number has a successor, that successor is unique.

 

9     ALL(a):ALL(b):ALL(c):[(a,b) e next & (a,c) e next => b=c]

      Axiom

 

If numbers x and y have the same successors, then x = y.

 

10    ALL(a):ALL(b):ALL(c):ALL(d):[(a,b) e next & (c,d) e next => [b=d => a=c]]

      Axiom

 

Induction

 

11    ALL(a):[Set(a) & ALL(b):[b e a => b e n]

     => [0 e a & ALL(b):[b e a => ALL(c):[(b,c) e next => c e a]]

     => ALL(b):[b e n => b e a]]]

      Axiom

 

 

PROOF

*****

 

Apply Subset Axiom (for inductive proof)

 

12    EXIST(sub):[Set(sub) & ALL(a):[a e sub <=> a e n & ~(a,a) e next]]

      Subset, 1

 

13    Set(p) & ALL(a):[a e p <=> a e n & ~(a,a) e next]

      E Spec, 12

 

Define: p

 

14    Set(p)

      Split, 13

 

p is the subset on n satsifying the required condition

 

15    ALL(a):[a e p <=> a e n & ~(a,a) e next]

      Split, 13

 

Apply inducton axiom for set p

 

16    Set(p) & ALL(b):[b e p => b e n]

     => [0 e p & ALL(b):[b e p => ALL(c):[(b,c) e next => c e p]]

     => ALL(b):[b e n => b e p]]

      U Spec, 11

 

    

     Prove: ALL(b):[b e p => b e n]  i.e. p is a subset of n

    

     Suppose...

 

      17    x e p

            Premise

 

     Apply definition of p

 

      18    x e p <=> x e n & ~(x,x) e next

            U Spec, 15

 

      19    [x e p => x e n & ~(x,x) e next]

          & [x e n & ~(x,x) e next => x e p]

            Iff-And, 18

 

      20    x e p => x e n & ~(x,x) e next

            Split, 19

 

      21    x e n & ~(x,x) e next => x e p

            Split, 19

 

      22    x e n & ~(x,x) e next

            Detach, 20, 17

 

      23    x e n

            Split, 22

 

As Required:

 

24    ALL(b):[b e p => b e n]

      4 Conclusion, 17

 

Joining results...

 

25    Set(p) & ALL(b):[b e p => b e n]

      Join, 14, 24

 

Sufficient: For ALL(b):[b e n => b e p]

 

26    0 e p & ALL(b):[b e p => ALL(c):[(b,c) e next => c e p]]

     => ALL(b):[b e n => b e p]

      Detach, 16, 25

 

Prove: 0 e p

 

Apply definition of p

 

27    0 e p <=> 0 e n & ~(0,0) e next

      U Spec, 15

 

28    [0 e p => 0 e n & ~(0,0) e next]

     & [0 e n & ~(0,0) e next => 0 e p]

      Iff-And, 27

 

29    0 e p => 0 e n & ~(0,0) e next

      Split, 28

 

30    0 e n & ~(0,0) e next => 0 e p

      Split, 28

 

31    0 e n => ~(0,0) e next

      U Spec, 6

 

32    ~(0,0) e next

      Detach, 31, 2

 

33    0 e n & ~(0,0) e next

      Join, 2, 32

 

As Required:

 

34    0 e p

      Detach, 30, 33

 

    

     Prove: ALL(b):[b e p => ALL(c):[(b,c) e next => c e p]]

    

     Suppose...

 

      35    x e p

            Premise

 

     Apply definition of p

 

      36    x e p <=> x e n & ~(x,x) e next

            U Spec, 15

 

      37    [x e p => x e n & ~(x,x) e next]

          & [x e n & ~(x,x) e next => x e p]

            Iff-And, 36

 

      38    x e p => x e n & ~(x,x) e next

            Split, 37

 

      39    x e n & ~(x,x) e next => x e p

            Split, 37

 

      40    x e n & ~(x,x) e next

            Detach, 38, 35

 

      41    x e n

            Split, 40

 

      42    ~(x,x) e next

            Split, 40

 

         

          Prove: ALL(c):[(x,c) e next => c e p]

         

          Suppose...

 

            43    (x,x') e next

                  Premise

 

          Apply definition of p

 

            44    x' e p <=> x' e n & ~(x',x') e next

                  U Spec, 15

 

            45    [x' e p => x' e n & ~(x',x') e next]

              & [x' e n & ~(x',x') e next => x' e p]

                  Iff-And, 44

 

            46    x' e p => x' e n & ~(x',x') e next

                  Split, 45

 

          Sufficient: For x' e p

 

            47    x' e n & ~(x',x') e next => x' e p

                  Split, 45

 

            48    ALL(b):[(x,b) e next => x e n & b e n]

                  U Spec, 5

 

            49    (x,x') e next => x e n & x' e n

                  U Spec, 48

 

            50    x e n & x' e n

                  Detach, 49, 43

 

            51    x e n

                  Split, 50

 

            52    x' e n

                  Split, 50

 

             

              Prove: ~(x',x') e next

             

              Suppose to the contrary...

 

                  53    (x',x') e next

                        Premise

 

              Apply axiom

 

                  54    ALL(b):ALL(c):ALL(d):[(x,b) e next & (c,d) e next => [b=d => x=c]]

                        U Spec, 10

 

                  55    ALL(c):ALL(d):[(x,x') e next & (c,d) e next => [x'=d => x=c]]

                        U Spec, 54

 

                  56    ALL(d):[(x,x') e next & (x',d) e next => [x'=d => x=x']]

                        U Spec, 55

 

                  57    (x,x') e next & (x',x') e next => [x'=x' => x=x']

                        U Spec, 56

 

                  58    (x,x') e next & (x',x') e next

                        Join, 43, 53

 

                  59    x'=x' => x=x'

                        Detach, 57, 58

 

                  60    x'=x'

                        Reflex

 

                  61    x=x'

                        Detach, 59, 60

 

                  62    ~(x',x') e next

                        Substitute, 61, 42

 

              Obtain the contradiction...

 

                  63    (x',x') e next & ~(x',x') e next

                        Join, 53, 62

 

          As Required:

 

            64    ~(x',x') e next

                  4 Conclusion, 53

 

            65    x' e n & ~(x',x') e next

                  Join, 52, 64

 

            66    x' e p

                  Detach, 47, 65

 

     As Required:

 

      67    ALL(c):[(x,c) e next => c e p]

            4 Conclusion, 43

 

As Required:

 

68    ALL(b):[b e p => ALL(c):[(b,c) e next => c e p]]

      4 Conclusion, 35

 

Joining results...

 

69    0 e p

     & ALL(b):[b e p => ALL(c):[(b,c) e next => c e p]]

      Join, 34, 68

 

70    ALL(b):[b e n => b e p]

      Detach, 26, 69

 

    

     Prove: ALL(a):[a e n => ~(a,a) e next]

    

     Suppose...

 

      71    x e n

            Premise

 

     Apply previous result

 

      72    x e n => x e p

            U Spec, 70

 

      73    x e p

            Detach, 72, 71

 

      74    x e p <=> x e n & ~(x,x) e next

            U Spec, 15

 

      75    [x e p => x e n & ~(x,x) e next]

          & [x e n & ~(x,x) e next => x e p]

            Iff-And, 74

 

      76    x e p => x e n & ~(x,x) e next

            Split, 75

 

      77    x e n & ~(x,x) e next => x e p

            Split, 75

 

      78    x e n & ~(x,x) e next

            Detach, 76, 73

 

      79    x e n

            Split, 78

 

      80    ~(x,x) e next

            Split, 78

 

As Required:

 

81    ALL(a):[a e n => ~(a,a) e next]

      4 Conclusion, 71