Theorem: ALL(a):ALL(b):[a ε n & b ε n => P(a) & Q(b)]
<=> ALL(a):[a ε n => P(a)] & ALL(b):[b ε n => Q(b)
Proof
-----
Normally here, we would have axioms about n. Here, we begin by simply saying n
is a set. In doing so, we also delay the generalizations about n to the very
end of the proof.
1 Set(n)
Premise
"=>"
Prove: ALL(a):ALL(b):[a ε n & b ε n => P(a) & Q(b)]
=> ALL(a):[a ε n => P(a)] & ALL(b):[b ε n => Q(b)]
Suppose...
2 ALL(a):ALL(b):[a ε n & b ε n => P(a) & Q(b)]
Premise
Prove: ALL(a):[a ε n => P(a)]
Suppose...
3 x ε n
Premise
Apply premise (line 2) for a=x and b=x
4 ALL(b):[x ε n & b ε n => P(x) & Q(b)]
U Spec, 2
5 x ε n & x ε n => P(x) & Q(x)
U Spec, 4
6 x ε n & x ε n
Join, 3, 3
Apply detachment
7 P(x) & Q(x)
Detach, 5, 6
8 P(x)
Split, 7
As Required:
9 ALL(a):[a ε n => P(a)]
Conclusion, 3
Prove: ALL(b):[b ε n => Q(b)]
Suppose...
10 x ε n
Premise
Again, apply premise (line 2) for a=x and b=x
11 ALL(b):[x ε n & b ε n => P(x) & Q(b)]
U Spec, 2
12 x ε n & x ε n => P(x) & Q(x)
U Spec, 11
13 x ε n & x ε n
Join, 10, 10
Apply detachment
14 P(x) & Q(x)
Detach, 12, 13
15 Q(x)
Split, 14
As Required:
16 ALL(b):[b ε n => Q(b)]
Conclusion, 10
Join results
17 ALL(a):[a ε n => P(a)] & ALL(b):[b ε n => Q(b)]
Join, 9, 16
"=>"
As Required:
18 ALL(a):ALL(b):[a ε n & b ε n => P(a) & Q(b)]
=> ALL(a):[a ε n => P(a)] & ALL(b):[b ε n => Q(b)]
Conclusion, 2
"<="
Prove: ALL(a):[a ε n => P(a)] & ALL(b):[b ε n => Q(b)]
=> ALL(a):ALL(b):[a ε n & b ε n => P(a) & Q(b)]
Suppose...
19 ALL(a):[a ε n => P(a)] & ALL(b):[b ε n => Q(b)]
Premise
Split premise
20 ALL(a):[a ε n => P(a)]
Split, 19
21 ALL(b):[b ε n => Q(b)]
Split, 19
Prove: ALL(a):ALL(b):[a ε n & b ε n => P(a) & Q(b)]
Suppose...
22 x ε n & y ε n
Premise
23 x ε n
Split, 22
24 y ε n
Split, 22
Apply premise (line 20) for a=x
25 x ε n => P(x)
U Spec, 20
Apply detachment
26 P(x)
Detach, 25, 23
Apply premise (line 21) for b=y
27 y ε n => Q(y)
U Spec, 21
Apply detachment
28 Q(y)
Detach, 27, 24
Join results
29 P(x) & Q(y)
Join, 26, 28
As Required:
30 ALL(a):ALL(b):[a ε n & b ε n => P(a) & Q(b)]
Conclusion, 22
"<="
As Required:
31 ALL(a):[a ε n => P(a)] & ALL(b):[b ε n => Q(b)]
=> ALL(a):ALL(b):[a ε n & b ε n => P(a) & Q(b)]
Conclusion, 19
Join results
32 [ALL(a):ALL(b):[a ε n & b ε n => P(a) & Q(b)]
=> ALL(a):[a ε n => P(a)] & ALL(b):[b ε n => Q(b)]]
& [ALL(a):[a ε n => P(a)] & ALL(b):[b ε n => Q(b)]
=> ALL(a):ALL(b):[a ε n & b ε n => P(a) & Q(b)]]
Join, 18, 31
As Required:
33 ALL(a):ALL(b):[a ε n & b ε n => P(a) & Q(b)]
<=> ALL(a):[a ε n => P(a)] & ALL(b):[b ε n => Q(b)]
Iff-And, 32