THEOREM

*******

 

For every set there exists 3 disjoint subsets on which a trichotomy rule holds. (Notation: '|' = OR-operator)

 

     ALL(s):[Set(s)=> EXIST(t):EXIST(u):EXIST(v):[Set(t) & Set(u) & Set(v)  

 

     & ALL(a):[a e t => a e s]  <---- Subsets t, u, v of s

     & ALL(a):[a e u => a e s]

     & ALL(a):[a e v => a e s]

 

     & ALL(a):[a e s

     => [a e t | a e u | a e v]  <---- Trichotomy Rule

     & ~[a e t & a e u]

     & ~[a e t & a e v]

     & ~[a e u & a e v]]]]]

 

Proof uses: t = s and u = v = { }

 

Dan Christensen

2023-08-03

http://www.dcproof.com

 

 

PROOF

*****

   

    Let s be an arbitrary set

 

      1     Set(s)

            Premise

 

    Apply Subset Axiom

 

      2     EXIST(sub):[Set(sub) & ALL(a):[a e sub <=> a e s & a e s]]

            Subset, 1

 

      3     Set(t) & ALL(a):[a e t <=> a e s & a e s]

            E Spec, 2

 

    Define: t  (t=s)

 

      4     Set(t)

            Split, 3

 

      5     ALL(a):[a e t <=> a e s & a e s]

            Split, 3

 

        

         Prove: t is a subset of s

        

         Suppose...

 

            6     x e t

                  Premise

 

         Apply definition of t

 

            7     x e t <=> x e s & x e s

                  U Spec, 5

 

            8     [x e t => x e s & x e s] & [x e s & x e s => x e t]

                  Iff-And, 7

 

            9     x e t => x e s & x e s

                  Split, 8

 

            10   x e s & x e s => x e t

                  Split, 8

 

            11   x e s & x e s

                  Detach, 9, 6

 

            12   x e s

                  Split, 11

 

    As Required:

 

      13   ALL(a):[a e t => a e s]

            4 Conclusion, 6

 

        

         Prove: s is a subset of t

        

         Suppose...

 

            14   x e s

                  Premise

 

         Apply definition of t

 

            15   x e t <=> x e s & x e s

                  U Spec, 5

 

            16   [x e t => x e s & x e s] & [x e s & x e s => x e t]

                  Iff-And, 15

 

            17   x e s & x e s => x e t

                  Split, 16

 

            18   x e s & x e s

                  Join, 14, 14

 

            19   x e t

                  Detach, 17, 18

 

    As Required:

 

      20   ALL(a):[a e s => a e t]

            4 Conclusion, 14

 

    Apply Subset Axiom

 

      21   EXIST(sub):[Set(sub) & ALL(a):[a e sub <=> a e s & ~a e s]]

            Subset, 1

 

      22   Set(u) & ALL(a):[a e u <=> a e s & ~a e s]

            E Spec, 21

 

    Define: u  (empty subset of s)

 

      23   Set(u)

            Split, 22

 

      24   ALL(a):[a e u <=> a e s & ~a e s]

            Split, 22

 

        

         Prove: u is a subset of s

        

         Suppose...

 

            25   x e u

                  Premise

 

         Apply defintion of u

 

            26   x e u <=> x e s & ~x e s

                  U Spec, 24

 

            27   [x e u => x e s & ~x e s] & [x e s & ~x e s => x e u]

                  Iff-And, 26

 

            28   x e u => x e s & ~x e s

                  Split, 27

 

            29   x e s & ~x e s

                  Detach, 28, 25

 

            30   x e s

                  Split, 29

 

    As Required:

 

      31   ALL(a):[a e u => a e s]

            4 Conclusion, 25

 

        

         Prove: u is empty

        

         Suppose...

 

            32   x e u

                  Premise

 

         Apply definition of u

 

            33   x e u <=> x e s & ~x e s

                  U Spec, 24

 

            34   [x e u => x e s & ~x e s] & [x e s & ~x e s => x e u]

                  Iff-And, 33

 

            35   x e u => x e s & ~x e s

                  Split, 34

 

            36   x e s & ~x e s

                  Detach, 35, 32

 

    As Required:

 

      37   ~EXIST(a):a e u

            4 Conclusion, 32

 

      38   Set(v) & ALL(a):[a e v <=> a e s & ~a e s]

            E Spec, 21

 

    Define: v  (empty subset of s)

 

      39   Set(v)

            Split, 38

 

      40   ALL(a):[a e v <=> a e s & ~a e s]

            Split, 38

 

        

         Prove: v is a subset of s

        

         Suppose...

 

            41   x e v

                  Premise

 

         Apply definition of v

 

            42   x e v <=> x e s & ~x e s

                  U Spec, 40

 

            43   [x e v => x e s & ~x e s] & [x e s & ~x e s => x e v]

                  Iff-And, 42

 

            44   x e v => x e s & ~x e s

                  Split, 43

 

            45   x e s & ~x e s

                  Detach, 44, 41

 

            46   x e s

                  Split, 45

 

    As Required:

 

      47   ALL(a):[a e v => a e s]

            4 Conclusion, 41

 

        

         Prove: ~EXIST(a):a e v

        

         Suppose to contrary...

 

            48   x e v

                  Premise

 

         Apply definition of v

 

            49   x e v <=> x e s & ~x e s

                  U Spec, 40

 

            50   [x e v => x e s & ~x e s] & [x e s & ~x e s => x e v]

                  Iff-And, 49

 

            51   x e v => x e s & ~x e s

                  Split, 50

 

            52   x e s & ~x e s

                  Detach, 51, 48

 

    v is empty

 

      53   ~EXIST(a):a e v

            4 Conclusion, 48

 

        

         Prove: ALL(a):[a e s

                => [a e t | a e u | a e v]

                & ~[a e t & a e u]

                & ~[a e t & a e v]

                & ~[a e u & a e v]]

        

         Suppose...

 

            54   x e s

                  Premise

 

            55   x e s => x e t

                  U Spec, 20

 

            56   x e t

                  Detach, 55, 54

 

            57   x e t | x e u

                  Arb Or, 56

 

         As Required:

 

            58   x e t | x e u | x e v

                  Arb Or, 57

 

            

             Prove: ~[x e t & x e u]

            

             Suppose to the contrary...

 

                  59   x e t & x e u

                        Premise

 

                  60   x e u

                        Split, 59

 

                  61   EXIST(a):a e u

                        E Gen, 60

 

             Obtain contradiction...

 

                  62   EXIST(a):a e u & ~EXIST(a):a e u

                        Join, 61, 37

 

         As Required:

 

            63   ~[x e t & x e u]

                  4 Conclusion, 59

 

            

             Prove: ~[x e t & x e v]

            

             Suppose to the contrary...

 

                  64   x e t & x e v

                        Premise

 

                  65   x e v

                        Split, 64

 

                  66   EXIST(a):a e v

                        E Gen, 65

 

             Obtain contradiction...

 

                  67   EXIST(a):a e v & ~EXIST(a):a e v

                        Join, 66, 53

 

         As Required:

 

            68   ~[x e t & x e v]

                  4 Conclusion, 64

 

            

             Prove: ~[x e u & x e v]

            

             Suppose to the contrary...

 

                  69   x e u & x e v

                        Premise

 

                  70   x e u

                        Split, 69

 

                  71   EXIST(a):a e u

                        E Gen, 70

 

             Obtain contradiction...

 

                  72   ~EXIST(a):a e u & EXIST(a):a e u

                        Join, 37, 71

 

         As Required:

 

            73   ~[x e u & x e v]

                  4 Conclusion, 69

 

         Joining results...

 

            74   [x e t | x e u | x e v] & ~[x e t & x e u]

                  Join, 58, 63

 

            75   [x e t | x e u | x e v] & ~[x e t & x e u]

             & ~[x e t & x e v]

                  Join, 74, 68

 

            76   [x e t | x e u | x e v] & ~[x e t & x e u]

             & ~[x e t & x e v]

             & ~[x e u & x e v]

                  Join, 75, 73

 

    As Required:

 

      77   ALL(a):[a e s

         => [a e t | a e u | a e v] & ~[a e t & a e u]

         & ~[a e t & a e v]

         & ~[a e u & a e v]]

            4 Conclusion, 54

 

    Joining results...

 

      78   Set(t) & Set(u)

            Join, 4, 23

 

      79   Set(t) & Set(u) & Set(v)

            Join, 78, 39

 

      80   Set(t) & Set(u) & Set(v)

         & ALL(a):[a e t => a e s]

            Join, 79, 13

 

      81   Set(t) & Set(u) & Set(v)

         & ALL(a):[a e t => a e s]

         & ALL(a):[a e u => a e s]

            Join, 80, 31

 

      82   Set(t) & Set(u) & Set(v)

         & ALL(a):[a e t => a e s]

         & ALL(a):[a e u => a e s]

         & ALL(a):[a e v => a e s]

            Join, 81, 47

 

      83   Set(t) & Set(u) & Set(v)

         & ALL(a):[a e t => a e s]

         & ALL(a):[a e u => a e s]

         & ALL(a):[a e v => a e s]

         & ALL(a):[a e s

         => [a e t | a e u | a e v] & ~[a e t & a e u]

         & ~[a e t & a e v]

         & ~[a e u & a e v]]

            Join, 82, 77

 

As Required:

 

84   ALL(s):[Set(s)

    => EXIST(t):EXIST(u):EXIST(v):[Set(t) & Set(u) & Set(v)

    & ALL(a):[a e t => a e s]

    & ALL(a):[a e u => a e s]

    & ALL(a):[a e v => a e s]

    & ALL(a):[a e s

    => [a e t | a e u | a e v] & ~[a e t & a e u]

    & ~[a e t & a e v]

    & ~[a e u & a e v]]]]

      4 Conclusion, 1