The Left Inverse is the Right Inverse

-------------------------------------

 

Prove: ALL(a):[aeg => _a+a=0]

       where g is the underlying set that is closed under +

       '_' is the right inverse operator

       0 is the right identity

 

Outline:

 

Let x e g. Applying the axioms of group theory, we have:

 

_x+x = _x+x+0              (Identity)

     = _x+x+(_x+_(_x))     (Inverse)

     = _x+(x+(_x+_(_x)))   (Associativity) 

     = _x+(x+_x+_(_x))     (Associativity)

     = _x+(0+_(_x))        (Inverse) 

     = _x+0+_(_x)          (Associativity)  

     = _x+_(_x)            (Identity)

     = 0                   (Inverse)

 

 

Given The Group Axioms

----------------------

 

G1:

 

1     Set(g)

      Axiom

 

G2:

 

2     0 e g

      Axiom

 

G3: Closure

 

3     ALL(a):ALL(b):[a e g & b e g => a+b e g]

      Axiom

 

G4: Associativity

 

4     ALL(a):ALL(b):ALL(c):[a e g & b e g & c e g => a+b+c=a+(b+c)]

      Axiom

 

G5: Right Identity

 

5     ALL(a):[a e g => a+0=a]

      Axiom

 

G6:

 

6     ALL(a):[a e g => _a e g]

      Axiom

 

G7: Right Inverse

 

7     ALL(a):[a e g => a+_a=0]

      Axiom

 

    

     Proof

     -----

    

     Suppose...

 

      8     x e g

            Premise

 

     Apply G6

 

      9     x e g => _x e g

            U Spec, 6

 

      10    _x e g

            Detach, 9, 8

 

     Apply G6

 

      11    _x e g => _(_x) e g

            U Spec, 6

 

      12    _(_x) e g

            Detach, 11, 10

 

     Apply G7

 

      13    x e g => x+_x=0

            U Spec, 7

 

      14    x+_x=0

            Detach, 13, 8

 

     Apply G7

 

      15    _x e g => _x+_(_x)=0

            U Spec, 7

 

      16    _x+_(_x)=0

            Detach, 15, 10

 

     Apply G5

 

      17    _x+x e g => _x+x+0=_x+x

            U Spec, 5

 

     Apply G3

 

      18    ALL(b):[_x e g & b e g => _x+b e g]

            U Spec, 3

 

      19    _x e g & x e g => _x+x e g

            U Spec, 18

 

      20    _x e g & x e g

            Join, 10, 8

 

      21    _x+x e g

            Detach, 19, 20

 

      22    _x+x+0=_x+x

            Detach, 17, 21

 

      23    _x+x=_x+x+0

            Sym, 22

 

      24    _x+x=_x+x+(_x+_(_x))

            Substitute, 16, 23

 

     Apply G4

 

      25    ALL(b):ALL(c):[_x e g & b e g & c e g => _x+b+c=_x+(b+c)]

            U Spec, 4

 

      26    ALL(c):[_x e g & x e g & c e g => _x+x+c=_x+(x+c)]

            U Spec, 25

 

      27    _x e g & x e g & _x+_(_x) e g => _x+x+(_x+_(_x))=_x+(x+(_x+_(_x)))

            U Spec, 26

 

      28    ALL(b):[_x e g & b e g => _x+b e g]

            U Spec, 3

 

      29    _x e g & _(_x) e g => _x+_(_x) e g

            U Spec, 28

 

      30    _x e g & _(_x) e g

            Join, 10, 12

 

      31    _x+_(_x) e g

            Detach, 29, 30

 

      32    _x e g & x e g

            Join, 10, 8

 

      33    _x e g & x e g & _x+_(_x) e g

            Join, 32, 31

 

      34    _x+x+(_x+_(_x))=_x+(x+(_x+_(_x)))

            Detach, 27, 33

 

      35    _x+x=_x+(x+(_x+_(_x)))

            Substitute, 34, 24

 

     Apply G4

 

      36    ALL(b):ALL(c):[x e g & b e g & c e g => x+b+c=x+(b+c)]

            U Spec, 4

 

      37    ALL(c):[x e g & _x e g & c e g => x+_x+c=x+(_x+c)]

            U Spec, 36

 

      38    x e g & _x e g & _(_x) e g => x+_x+_(_x)=x+(_x+_(_x))

            U Spec, 37

 

      39    x e g & _x e g

            Join, 8, 10

 

      40    x e g & _x e g & _(_x) e g

            Join, 39, 12

 

      41    x+_x+_(_x)=x+(_x+_(_x))

            Detach, 38, 40

 

      42    _x+x=_x+(x+_x+_(_x))

            Substitute, 41, 35

 

      43    _x+x=_x+(0+_(_x))

            Substitute, 14, 42

 

     Apply G4

 

      44    ALL(b):ALL(c):[_x e g & b e g & c e g => _x+b+c=_x+(b+c)]

            U Spec, 4

 

      45    ALL(c):[_x e g & 0 e g & c e g => _x+0+c=_x+(0+c)]

            U Spec, 44

 

      46    _x e g & 0 e g & _(_x) e g => _x+0+_(_x)=_x+(0+_(_x))

            U Spec, 45

 

      47    _x e g & 0 e g

            Join, 10, 2

 

      48    _x e g & 0 e g & _(_x) e g

            Join, 47, 12

 

      49    _x+0+_(_x)=_x+(0+_(_x))

            Detach, 46, 48

 

      50    _x+x=_x+0+_(_x)

            Substitute, 49, 43

 

     Apply G5

 

      51    _x e g => _x+0=_x

            U Spec, 5

 

      52    _x+0=_x

            Detach, 51, 10

 

      53    _x+x=_x+_(_x)

            Substitute, 52, 50

 

      54    _x+x=0

            Substitute, 16, 53

 

As Required:

 

55    ALL(a):[a e g => _a+a=0]

      4 Conclusion, 8

 

     Prove: ALL(a):[a e g => a+_a=0 & _a+a=0]

 

      56    x e g

            Premise

 

      57    x e g => x+_x=0

            U Spec, 7

 

      58    x+_x=0

            Detach, 57, 56

 

      59    x e g => _x+x=0

            U Spec, 55

 

      60    _x+x=0

            Detach, 59, 56

 

      61    x+_x=0 & _x+x=0

            Join, 58, 60

 

As Required:

 

62    ALL(a):[a e g => a+_a=0 & _a+a=0]

      4 Conclusion, 56