THEOREM

*******

 

    ALL(e):ALL(e'):[Set(e) & Set(e')

    => [ALL(a):~a e e & ALL(a):~a e e' => e=e']]

 

   By Dan Christensen

   http://www.dcproof.com

 

 

PROOF

*****

 

    Let e and e' be sets

 

      1     Set(e) & Set(e')

            Premise

 

      2     Set(e)

            Split, 1

 

      3     Set(e')

            Split, 1

 

         Prove: ALL(a):~a e e & ALL(a):~a e e' => e=e'

        

         Suppose e and e’ are empty

 

            4     ALL(a):~a e e & ALL(a):~a e e'

                  Premise

 

            5     ALL(a):~a e e

                  Split, 4

 

            6     ALL(a):~a e e'

                  Split, 4

 

         Apply Set Equality Axiom

 

            7     ALL(a):ALL(b):[Set(a) & Set(b) => [a=b <=> ALL(c):[c e a <=> c e b]]]

                  Set Equality

 

            8     ALL(b):[Set(e) & Set(b) => [e=b <=> ALL(c):[c e e <=> c e b]]]

                  U Spec, 7

 

            9     Set(e) & Set(e') => [e=e' <=> ALL(c):[c e e <=> c e e']]

                  U Spec, 8

 

            10   e=e' <=> ALL(c):[c e e <=> c e e']

                  Detach, 9, 1

 

            11   [e=e' => ALL(c):[c e e <=> c e e']]

             & [ALL(c):[c e e <=> c e e'] => e=e']

                  Iff-And, 10

 

            12   e=e' => ALL(c):[c e e <=> c e e']

                  Split, 11

 

         Sufficient: For e=e'

 

            13   ALL(c):[c e e <=> c e e'] => e=e'

                  Split, 11

 

 

             '=>'

            

             Prove: ALL(c):[c e e => c e e']

            

             Suppose...

 

                  14   x e e

                        Premise

 

                  15   ~x e e

                        U Spec, 5

 

             Vacuously true:

 

                  16   ~x e e => x e e'

                        Arb Cons, 14

 

                  17   x e e'

                        Detach, 16, 15

 

         As Required:

 

            18   ALL(c):[c e e => c e e']

                  4 Conclusion, 14

 

 

             '<='

            

             Prove: ALL(c):[c e e' => c e e]

            

             Suppose...

 

                  19   x e e'

                        Premise

 

                  20   ~x e e'

                        U Spec, 6

 

             Vacuously true:

 

                  21   ~x e e' => x e e

                        Arb Cons, 19

 

                  22   x e e

                        Detach, 21, 20

 

         As Required:

 

            23   ALL(c):[c e e' => c e e]

                  4 Conclusion, 19

 

         Joining results...

 

            24   ALL(c):[[c e e => c e e'] & [c e e' => c e e]]

                  Join, 18, 23

 

            25   ALL(c):[c e e <=> c e e']

                  Iff-And, 24

 

            26   e=e'

                  Detach, 13, 25

 

    As Required:

 

      27   ALL(a):~a e e & ALL(a):~a e e' => e=e'

            4 Conclusion, 4

 

As Required:

 

28   ALL(e):ALL(e'):[Set(e) & Set(e')

    => [ALL(a):~a e e & ALL(a):~a e e' => e=e']]

      4 Conclusion, 1