Let x = {{}}
Let y be the set of all elements of x not equal to {}.
Is the following statement true?
Az(zey -> zex)
Yes.
Let x be a set such aεx iff a is an empty set.
1 Set(x) & ALL(a):[a ε x <=> Set(a) & ALL(b):~b ε a]
Premise
2 Set(x)
Split, 1
3 ALL(a):[a ε x <=> Set(a) & ALL(b):~b ε a]
Split, 1
Let y be the subset of x, all elements of which are not empty sets.
4 Set(y) & ALL(a):[a ε y <=> a ε x & ~ALL(b):~b ε a]
Premise
5 Set(y)
Split, 4
6 ALL(a):[a ε y <=> a ε x & ~ALL(b):~b ε a]
Split, 4
Prove: For arbitrary p, ~pεy
Suppose to the contrary...
7 p ε y
Premise
Applying the definition of y...
8 p ε y <=> p ε x & ~ALL(b):~b ε p
U Spec, 6
9 [p ε y => p ε x & ~ALL(b):~b ε p]
& [p ε x & ~ALL(b):~b ε p => p ε y]
Iff-And, 8
10 p ε y => p ε x & ~ALL(b):~b ε p
Split, 9
11 p ε x & ~ALL(b):~b ε p => p ε y
Split, 9
12 p ε x & ~ALL(b):~b ε p
Detach, 10, 7
From the definition of y, we have...
13 p ε x
Split, 12
14 ~ALL(b):~b ε p
Split, 12
Applying the defintion of x...
15 p ε x <=> Set(p) & ALL(b):~b ε p
U Spec, 3
16 [p ε x => Set(p) & ALL(b):~b ε p]
& [Set(p) & ALL(b):~b ε p => p ε x]
Iff-And, 15
17 p ε x => Set(p) & ALL(b):~b ε p
Split, 16
18 Set(p) & ALL(b):~b ε p => p ε x
Split, 16
19 Set(p) & ALL(b):~b ε p
Detach, 17, 13
From the definition of x, we have...
20 Set(p)
Split, 19
21 ALL(b):~b ε p
Split, 19
We obtain the contradiction...
22 ~ALL(b):~b ε p & ALL(b):~b ε p
Join, 14, 21
As required...
23 ~p ε y
Conclusion, 7
Generalizing, y is an empty set
24 ALL(a):~a ε y
U Gen, 23
Prove: y is a subset of x
Since y is an empty set, for arbitrary z, we have...
25 ~z ε y
U Spec, 24
26 ~z ε x => ~z ε y
Arb Ante, 25
27 ~~z ε y => ~~z ε x
Contra, 26
28 z ε y => ~~z ε x
Rem DNeg, 27
29 z ε y => z ε x
Rem DNeg, 28
As Required: y is a subset of x
30 ALL(a):[a ε y => a ε x]
U Gen, 29