THEOREM 3

*********

 

Every empty set can be expressed as a family of sets of which there exists a union.

 

 

This machine-verified formal proof was written with the aid of the author's DC Proof 2.0 available at http://www.dcproof.com

 

 

   

    PROOF

    *****

   

    Suppose...

 

      1     Set(null) & ALL(a):~a e null

            Premise

 

      2     Set(null)

            Split, 1

 

      3     ALL(a):~a e null

            Split, 1

 

            4     x e null

                  Premise

 

         Apply definition of null

 

            5     ~x e null

                  U Spec, 3

 

            6     ~x e null => Set(x)

                  Arb Cons, 4

 

            7     Set(x)

                  Detach, 6, 5

 

    As Required:

 

      8     ALL(a):[a e null => Set(a)]

            4 Conclusion, 4

 

    Apply Axiom of Arbitrary Union

 

      9     ALL(f):[Set(f) & ALL(a):[a e f => Set(a)]

         => EXIST(a):[Set(a) & ALL(b):[b e a <=> EXIST(c):[c e f & b e c]]]]

            Arb Union

 

      10   Set(null) & ALL(a):[a e null => Set(a)]

         => EXIST(a):[Set(a) & ALL(b):[b e a <=> EXIST(c):[c e null & b e c]]]

            U Spec, 9

 

      11   Set(null) & ALL(a):[a e null => Set(a)]

            Join, 2, 8

 

      12   EXIST(a):[Set(a) & ALL(b):[b e a <=> EXIST(c):[c e null & b e c]]]

            Detach, 10, 11

 

      13   Set(unull) & ALL(b):[b e unull <=> EXIST(c):[c e null & b e c]]

            E Spec, 12

 

    As Required:

 

      14   EXIST(unull):[Set(unull) & ALL(b):[b e unull <=> EXIST(c):[c e null & b e c]]]

            E Gen, 13

 

    Joining results...

 

      15   ALL(a):[a e null => Set(a)]

         & EXIST(unull):[Set(unull) & ALL(b):[b e unull <=> EXIST(c):[c e null & b e c]]]

            Join, 8, 14

 

 

As Required:

 

16   ALL(null):[Set(null) & ALL(a):~a e null

    => ALL(a):[a e null => Set(a)]

    & EXIST(unull):[Set(unull) & ALL(b):[b e unull <=> EXIST(c):[c e null & b e c]]]]

      4 Conclusion, 1