THEOREM 1

*********

 

For every set x, there exists an empty subset of x.

 

 

This machine-verified formal proof was written with the aid of the author's DC Proof 2.0 available at http://www.dcproof.com  

 

   

    PROOF

    *****

   

    Suppose x is a set

 

      1     Set(x)

            Premise

 

    Apply Subset Axiom

 

      2     EXIST(sub):[Set(sub) & ALL(a):[a e sub <=> a e x & ~a=a]]

            Subset, 1

 

      3     Set(null) & ALL(a):[a e null <=> a e x & ~a=a]

            E Spec, 2

 

    Define: null

 

      4     Set(null)

            Split, 3

 

      5     ALL(a):[a e null <=> a e x & ~a=a]

            Split, 3

 

        

         Prove: null is a subset of x

        

         Suppose...

 

            6     y e null

                  Premise

 

         Apply definition of null

 

            7     y e null <=> y e x & ~y=y

                  U Spec, 5

 

            8     [y e null => y e x & ~y=y] & [y e x & ~y=y => y e null]

                  Iff-And, 7

 

            9     y e null => y e x & ~y=y

                  Split, 8

 

            10   y e x & ~y=y => y e null

                  Split, 8

 

            11   y e x & ~y=y

                  Detach, 9, 6

 

            12   y e x

                  Split, 11

 

   

    null is a subset of x

   

    As Required:

 

      13   ALL(b):[b e null => b e x]

            4 Conclusion, 6

 

        

         Prove: ~EXIST(b):b e null

        

         Suppose to the contrary...

 

            14   y e null

                  Premise

 

         Apply definition of null

 

            15   y e null <=> y e x & ~y=y

                  U Spec, 5

 

            16   [y e null => y e x & ~y=y] & [y e x & ~y=y => y e null]

                  Iff-And, 15

 

            17   y e null => y e x & ~y=y

                  Split, 16

 

            18   y e x & ~y=y => y e null

                  Split, 16

 

            19   y e x & ~y=y

                  Detach, 17, 14

 

            20   y e x

                  Split, 19

 

            21   ~y=y

                  Split, 19

 

            22   y=y

                  Reflex

 

         Obtain the contradiction...

 

            23   y=y & ~y=y

                  Join, 22, 21

 

    As Required:

 

      24   ~EXIST(b):b e null

            4 Conclusion, 14

 

      25   ~~ALL(b):~b e null

            Quant, 24

 

    As Required:

 

      26   ALL(b):~b e null

            Rem DNeg, 25

 

    Joining results...

 

      27   Set(null) & ALL(b):[b e null => b e x]

            Join, 4, 13

 

      28   Set(null) & ALL(b):[b e null => b e x]

         & ALL(b):~b e null

            Join, 27, 26

 

 

As Required:

 

29   ALL(a):[Set(a)

    => EXIST(null):[Set(null) & ALL(b):[b e null => b e a]

    & ALL(b):~b e null]]

      4 Conclusion, 1