THEOREM
*******
1+1=2
This machine-verified formal
proof was written with the aid of the author's DC Proof 2.0 software available
at http://www.dcproof.com
                  
AXIOMS REQUIRED
***************
1     0 e n
      Axiom
2     ALL(a):[a e n =>
EXIST(b):[b e n & next(a)=b]]
      Axiom
3     ALL(a):[a e n => a+0=a]
      Axiom
4     ALL(a):ALL(b):[a e n & b e n => a+next(b)=next(a+b)]
      Axiom
PROOF
*****
Apply Axiom 2 for a=0
5     0 e n => EXIST(b):[b e n & next(0)=b]
      U Spec, 2
6     EXIST(b):[b e n & next(0)=b]
      Detach, 5, 1
7     1 e n & next(0)=1
      E Spec, 6
Define: 1
8     1 e n
      Split, 7
9     next(0)=1
      Split, 7
Apply Axiom 2 for a=1
10   1 e n => EXIST(b):[b e n & next(1)=b]
      U Spec, 2
11   EXIST(b):[b e n & next(1)=b]
      Detach, 10, 8
12   2 e n & next(1)=2
      E Spec, 11
Define: 2
13   2 e n
      Split, 12
14   next(1)=2
      Split, 12
Apply Axiom 3 for a=1
15   1 e n => 1+0=1
      U Spec, 3
16   1+0=1
      Detach, 15, 8
Apply Axiom 4 for a=1 and b=0
17   ALL(b):[1 e n & b e n => 1+next(b)=next(1+b)]
      U Spec, 4
18   1 e n & 0 e n => 1+next(0)=next(1+0)
      U Spec, 17
19   1 e n & 0 e n
      Join, 8, 1
20   1+next(0)=next(1+0)
      Detach, 18, 19
Substituting...
21   1+1=next(1+0)
      Substitute, 9, 20
22   1+1=next(1)
      Substitute, 16,
21
As Required:
23   1+1=2
      Substitute, 14,
22