THEOREM

*******

 

0*0 = 0

 

This machine-verified formal proof was written with the aid of

the author's DC Proof 2.0 software available at http://www.dcproof.com

 

 

AXIOMS / DEFINITIONS USED

*************************

 

Define: *

*********

 

1     ALL(a):ALL(b):[a e n & b e n => a*b e n]

      Axiom

 

2     ALL(a):[a e n => a*2=a+a]

      Axiom

 

3     ALL(a):ALL(b):[a e n & b e n => a*(b+1)=a*b+a]

      Axiom

 

 

Established Properties of +

***************************

 

+ is a binary function on n

 

4     ALL(a):ALL(b):[a e n & b e n => a+b e n]

      Axiom

 

Adding 0

 

5     ALL(a):[a e n => a+0=a]

      Axiom

 

+ is commutative

 

6     ALL(a):ALL(b):[a e n & b e n => a+b=b+a]

      Axiom

 

+ is right-cancelable

 

7     ALL(a):ALL(b):ALL(c):[a e n & b e n & c e n => [a+b=c+b => a=c]]

      Axiom

 

 

Define: 0, 1, 2

***************

 

8     0 e n

      Axiom

 

9     1 e n

      Axiom

 

10    2 e n

      Axiom

 

11    2=1+1

      Axiom

 

 

PROOF

*****

 

First...

 

Prove: 0*1=0

 

Apply definition of *

 

12    0 e n => 0*2=0+0

      U Spec, 2

 

13    0*2=0+0

      Detach, 12, 8

 

Apply definition of *

 

14    ALL(b):[0 e n & b e n => 0*(b+1)=0*b+0]

      U Spec, 3

 

15    0 e n & 1 e n => 0*(1+1)=0*1+0

      U Spec, 14

 

16    0 e n & 1 e n

      Join, 8, 9

 

17    0*(1+1)=0*1+0

      Detach, 15, 16

 

18    0*2=0*1+0

      Substitute, 11, 17

 

19    0+0=0*1+0

      Substitute, 13, 18

 

Apply cancelability of +

 

20    ALL(b):ALL(c):[0 e n & b e n & c e n => [0+b=c+b => 0=c]]

      U Spec, 7

 

21    ALL(c):[0 e n & 0 e n & c e n => [0+0=c+0 => 0=c]]

      U Spec, 20

 

22    0 e n & 0 e n & 0*1 e n => [0+0=0*1+0 => 0=0*1]

      U Spec, 21

 

Apply definition of *

 

23    ALL(b):[0 e n & b e n => 0*b e n]

      U Spec, 1

 

24    0 e n & 1 e n => 0*1 e n

      U Spec, 23

 

25    0 e n & 1 e n

      Join, 8, 9

 

26    0*1 e n

      Detach, 24, 25

 

27    0 e n & 0 e n

      Join, 8, 8

 

28    0 e n & 0 e n & 0*1 e n

      Join, 27, 26

 

29    0+0=0*1+0 => 0=0*1

      Detach, 22, 28

 

30    0=0*1

      Detach, 29, 19

 

As Required:

 

31    0*1=0

      Sym, 30

 

 

Prove: 0*0 = 0

 

32    ALL(b):[0 e n & b e n => 0*(b+1)=0*b+0]

      U Spec, 3

 

Apply definition of *

 

33    0 e n & 0 e n => 0*(0+1)=0*0+0

      U Spec, 32

 

34    0 e n & 0 e n

      Join, 8, 8

 

35    0*(0+1)=0*0+0

      Detach, 33, 34

 

Apply property of +

 

36    1 e n => 1+0=1

      U Spec, 5

 

37    1+0=1

      Detach, 36, 9

 

Apply commutativity of +

 

38    ALL(b):[0 e n & b e n => 0+b=b+0]

      U Spec, 6

 

39    0 e n & 1 e n => 0+1=1+0

      U Spec, 38

 

40    0 e n & 1 e n

      Join, 8, 9

 

41    0+1=1+0

      Detach, 39, 40

 

42    0+1=1

      Substitute, 41, 37

 

43    0*1=0*0+0

      Substitute, 42, 35

 

44    0=0*0+0

      Substitute, 30, 43

 

45    0 e n => 0+0=0

      U Spec, 5

 

46    0+0=0

      Detach, 45, 8

 

47    0+0=0*0+0

      Substitute, 46, 44

 

Apply cancelability of +

 

48    ALL(b):ALL(c):[0 e n & b e n & c e n => [0+b=c+b => 0=c]]

      U Spec, 7

 

49    ALL(c):[0 e n & 0 e n & c e n => [0+0=c+0 => 0=c]]

      U Spec, 48

 

50    0 e n & 0 e n & 0*0 e n => [0+0=0*0+0 => 0=0*0]

      U Spec, 49

 

Apply definition of *

 

51    ALL(b):[0 e n & b e n => 0*b e n]

      U Spec, 1

 

52    0 e n & 0 e n => 0*0 e n

      U Spec, 51

 

53    0 e n & 0 e n

      Join, 8, 8

 

54    0*0 e n

      Detach, 52, 53

 

55    0 e n & 0 e n

      Join, 8, 8

 

56    0 e n & 0 e n & 0*0 e n

      Join, 55, 54

 

57    0+0=0*0+0 => 0=0*0

      Detach, 50, 56

 

58    0=0*0

      Detach, 57, 47

 

As Required:

 

59    0*0=0

      Sym, 58